![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovmpo | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) |
ovmpog.2 | ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) |
ovmpog.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
ovmpo.4 | ⊢ 𝑆 ∈ V |
Ref | Expression |
---|---|
ovmpo | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpo.4 | . 2 ⊢ 𝑆 ∈ V | |
2 | ovmpog.1 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑅 = 𝐺) | |
3 | ovmpog.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐺 = 𝑆) | |
4 | ovmpog.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
5 | 2, 3, 4 | ovmpog 7584 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ V) → (𝐴𝐹𝐵) = 𝑆) |
6 | 1, 5 | mp3an3 1446 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3471 (class class class)co 7424 ∈ cmpo 7426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-iota 6503 df-fun 6553 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 |
This theorem is referenced by: fvproj 8143 seqomlem1 8475 seqomlem4 8478 oav 8536 omv 8537 oev 8539 iunfictbso 10143 fin23lem12 10360 axdc4lem 10484 axcclem 10486 addpipq2 10965 mulpipq2 10968 subval 11487 divval 11910 cnref1o 13005 ixxval 13370 fzval 13524 modval 13874 om2uzrdg 13959 uzrdgsuci 13963 axdc4uzlem 13986 seqval 14015 seqp1 14019 bcval 14301 cnrecnv 15150 risefacval 15990 fallfacval 15991 gcdval 16476 lcmval 16568 imasvscafn 17524 imasvscaval 17525 grpsubval 18947 isghm 19175 lactghmga 19365 efgmval 19672 efgtval 19683 frgpup3lem 19737 dvrval 20347 frlmval 21687 psrvsca 21897 mat1comp 22360 mamulid 22361 mamurid 22362 madufval 22557 xkococnlem 23581 xkococn 23582 cnextval 23983 dscmet 24499 cncfval 24826 htpycom 24920 htpyid 24921 phtpycom 24932 phtpyid 24933 ehl1eudisval 25367 logbval 26716 addsval 27897 subsval 27988 mulsval 28027 divsval 28107 seqsval 28179 om2noseqrdg 28195 noseqrdgsuc 28199 seqsp1 28202 isismt 28356 clwwlknon 29918 clwwlk0on0 29920 grpodivval 30363 ipval 30531 lnoval 30580 nmoofval 30590 bloval 30609 0ofval 30615 ajfval 30637 hvsubval 30844 hosmval 31563 hommval 31564 hodmval 31565 hfsmval 31566 hfmmval 31567 kbfval 31780 opsqrlem3 31970 dpval 32631 xdivval 32660 smatrcl 33402 smatlem 33403 mdetpmtr12 33431 pstmfval 33502 sxval 33814 ismbfm 33875 dya2iocival 33898 sitgval 33957 sitmval 33974 oddpwdcv 33980 ballotlemgval 34148 vtsval 34274 cvmlift2lem4 34921 icoreval 36837 metf1o 37233 heiborlem3 37291 heiborlem6 37294 heiborlem8 37296 heibor 37299 ldualvs 38613 tendopl 40253 cdlemkuu 40372 dvavsca 40494 dvhvaddval 40567 dvhvscaval 40576 hlhilipval 41430 resubval 41925 prjspnval 42043 rrx2xpref1o 47842 functhinclem1 48098 |
Copyright terms: Public domain | W3C validator |