HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hosmval Structured version   Visualization version   GIF version

Theorem hosmval 31608
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 9-Nov-2000.) (Revised by Mario Carneiro, 23-Aug-2014.) (New usage is discouraged.)
Assertion
Ref Expression
hosmval ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
Distinct variable groups:   𝑥,𝑆   𝑥,𝑇

Proof of Theorem hosmval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-hilex 30872 . . 3 ℋ ∈ V
21, 1elmap 8888 . 2 (𝑆 ∈ ( ℋ ↑m ℋ) ↔ 𝑆: ℋ⟶ ℋ)
31, 1elmap 8888 . 2 (𝑇 ∈ ( ℋ ↑m ℋ) ↔ 𝑇: ℋ⟶ ℋ)
4 fveq1 6893 . . . . 5 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
54oveq1d 7432 . . . 4 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑔𝑥)) = ((𝑆𝑥) + (𝑔𝑥)))
65mpteq2dv 5250 . . 3 (𝑓 = 𝑆 → (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑔𝑥))))
7 fveq1 6893 . . . . 5 (𝑔 = 𝑇 → (𝑔𝑥) = (𝑇𝑥))
87oveq2d 7433 . . . 4 (𝑔 = 𝑇 → ((𝑆𝑥) + (𝑔𝑥)) = ((𝑆𝑥) + (𝑇𝑥)))
98mpteq2dv 5250 . . 3 (𝑔 = 𝑇 → (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑔𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
10 df-hosum 31603 . . 3 +op = (𝑓 ∈ ( ℋ ↑m ℋ), 𝑔 ∈ ( ℋ ↑m ℋ) ↦ (𝑥 ∈ ℋ ↦ ((𝑓𝑥) + (𝑔𝑥))))
111mptex 7233 . . 3 (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))) ∈ V
126, 9, 10, 11ovmpo 7579 . 2 ((𝑆 ∈ ( ℋ ↑m ℋ) ∧ 𝑇 ∈ ( ℋ ↑m ℋ)) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
132, 3, 12syl2anbr 597 1 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆𝑥) + (𝑇𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5231  wf 6543  cfv 6547  (class class class)co 7417  m cmap 8843  chba 30792   + cva 30793   +op chos 30811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-hilex 30872
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-map 8845  df-hosum 31603
This theorem is referenced by:  hosval  31613  hoaddcl  31631
  Copyright terms: Public domain W3C validator
OSZAR »