Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemkuu Structured version   Visualization version   GIF version

Theorem cdlemkuu 40368
Description: Convert between function and operation forms of 𝑌. TODO: Use operation form everywhere. (Contributed by NM, 6-Jul-2013.)
Hypotheses
Ref Expression
cdlemk3.b 𝐵 = (Base‘𝐾)
cdlemk3.l = (le‘𝐾)
cdlemk3.j = (join‘𝐾)
cdlemk3.m = (meet‘𝐾)
cdlemk3.a 𝐴 = (Atoms‘𝐾)
cdlemk3.h 𝐻 = (LHyp‘𝐾)
cdlemk3.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk3.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk3.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk3.u1 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
cdlemk3.o2 𝑄 = (𝑆𝐷)
cdlemk3.u2 𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
Assertion
Ref Expression
cdlemkuu ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))
Distinct variable groups:   𝑒,𝑑,𝑓,𝑖,   ,𝑖   ,𝑑,𝑒,𝑓,𝑖   𝐴,𝑖   𝑗,𝑑,𝐷,𝑒,𝑓,𝑖   𝑓,𝐹,𝑖   𝐺,𝑑,𝑒,𝑗   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑑,𝑒,𝑓,𝑖   𝑄,𝑑,𝑒   𝑅,𝑑,𝑒,𝑓,𝑖   𝑇,𝑑,𝑒,𝑓,𝑖   𝑊,𝑑,𝑒,𝑓,𝑖
Allowed substitution hints:   𝐴(𝑒,𝑓,𝑗,𝑑)   𝐵(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑃(𝑗)   𝑄(𝑓,𝑖,𝑗)   𝑅(𝑗)   𝑆(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑇(𝑗)   𝐹(𝑒,𝑗,𝑑)   𝐺(𝑓,𝑖)   𝐻(𝑒,𝑓,𝑗,𝑑)   (𝑗)   𝐾(𝑒,𝑓,𝑗,𝑑)   (𝑒,𝑓,𝑗,𝑑)   (𝑗)   𝑁(𝑒,𝑗,𝑑)   𝑊(𝑗)   𝑌(𝑒,𝑓,𝑖,𝑗,𝑑)   𝑍(𝑒,𝑓,𝑖,𝑗,𝑑)

Proof of Theorem cdlemkuu
StepHypRef Expression
1 fveq2 6897 . . . . . . . . 9 (𝑑 = 𝐷 → (𝑆𝑑) = (𝑆𝐷))
2 cdlemk3.o2 . . . . . . . . 9 𝑄 = (𝑆𝐷)
31, 2eqtr4di 2786 . . . . . . . 8 (𝑑 = 𝐷 → (𝑆𝑑) = 𝑄)
43fveq1d 6899 . . . . . . 7 (𝑑 = 𝐷 → ((𝑆𝑑)‘𝑃) = (𝑄𝑃))
5 cnveq 5876 . . . . . . . . 9 (𝑑 = 𝐷𝑑 = 𝐷)
65coeq2d 5865 . . . . . . . 8 (𝑑 = 𝐷 → (𝑒𝑑) = (𝑒𝐷))
76fveq2d 6901 . . . . . . 7 (𝑑 = 𝐷 → (𝑅‘(𝑒𝑑)) = (𝑅‘(𝑒𝐷)))
84, 7oveq12d 7438 . . . . . 6 (𝑑 = 𝐷 → (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))) = ((𝑄𝑃) (𝑅‘(𝑒𝐷))))
98oveq2d 7436 . . . . 5 (𝑑 = 𝐷 → ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))))
109eqeq2d 2739 . . . 4 (𝑑 = 𝐷 → ((𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑)))) ↔ (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
1110riotabidv 7378 . . 3 (𝑑 = 𝐷 → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
12 fveq2 6897 . . . . . . 7 (𝑒 = 𝐺 → (𝑅𝑒) = (𝑅𝐺))
1312oveq2d 7436 . . . . . 6 (𝑒 = 𝐺 → (𝑃 (𝑅𝑒)) = (𝑃 (𝑅𝐺)))
14 coeq1 5860 . . . . . . . 8 (𝑒 = 𝐺 → (𝑒𝐷) = (𝐺𝐷))
1514fveq2d 6901 . . . . . . 7 (𝑒 = 𝐺 → (𝑅‘(𝑒𝐷)) = (𝑅‘(𝐺𝐷)))
1615oveq2d 7436 . . . . . 6 (𝑒 = 𝐺 → ((𝑄𝑃) (𝑅‘(𝑒𝐷))) = ((𝑄𝑃) (𝑅‘(𝐺𝐷))))
1713, 16oveq12d 7438 . . . . 5 (𝑒 = 𝐺 → ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷)))))
1817eqeq2d 2739 . . . 4 (𝑒 = 𝐺 → ((𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷)))) ↔ (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
1918riotabidv 7378 . . 3 (𝑒 = 𝐺 → (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
20 cdlemk3.u1 . . 3 𝑌 = (𝑑𝑇, 𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) (((𝑆𝑑)‘𝑃) (𝑅‘(𝑒𝑑))))))
21 riotaex 7380 . . 3 (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))) ∈ V
2211, 19, 20, 21ovmpo 7581 . 2 ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
23 cdlemk3.b . . . 4 𝐵 = (Base‘𝐾)
24 cdlemk3.l . . . 4 = (le‘𝐾)
25 cdlemk3.j . . . 4 = (join‘𝐾)
26 cdlemk3.a . . . 4 𝐴 = (Atoms‘𝐾)
27 cdlemk3.h . . . 4 𝐻 = (LHyp‘𝐾)
28 cdlemk3.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
29 cdlemk3.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
30 cdlemk3.m . . . 4 = (meet‘𝐾)
31 cdlemk3.u2 . . . 4 𝑍 = (𝑒𝑇 ↦ (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝑒)) ((𝑄𝑃) (𝑅‘(𝑒𝐷))))))
3223, 24, 25, 26, 27, 28, 29, 30, 31cdlemksv 40317 . . 3 (𝐺𝑇 → (𝑍𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
3332adantl 481 . 2 ((𝐷𝑇𝐺𝑇) → (𝑍𝐺) = (𝑗𝑇 (𝑗𝑃) = ((𝑃 (𝑅𝐺)) ((𝑄𝑃) (𝑅‘(𝐺𝐷))))))
3422, 33eqtr4d 2771 1 ((𝐷𝑇𝐺𝑇) → (𝐷𝑌𝐺) = (𝑍𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  cmpt 5231  ccnv 5677  ccom 5682  cfv 6548  crio 7375  (class class class)co 7420  cmpo 7422  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Atomscatm 38735  LHypclh 39457  LTrncltrn 39574  trLctrl 39631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-iota 6500  df-fun 6550  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425
This theorem is referenced by:  cdlemk31  40369  cdlemkuel-3  40371  cdlemkuv2-3N  40372  cdlemk18-3N  40373  cdlemk22-3  40374  cdlemkyu  40400
  Copyright terms: Public domain W3C validator
OSZAR »