![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfclel | Structured version Visualization version GIF version |
Description: Characterization of the elements of a class. (Contributed by BJ, 27-Jun-2019.) |
Ref | Expression |
---|---|
dfclel | ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cleljust 2108 | . 2 ⊢ (𝑦 ∈ 𝑧 ↔ ∃𝑢(𝑢 = 𝑦 ∧ 𝑢 ∈ 𝑧)) | |
2 | cleljust 2108 | . 2 ⊢ (𝑡 ∈ 𝑡 ↔ ∃𝑣(𝑣 = 𝑡 ∧ 𝑣 ∈ 𝑡)) | |
3 | 1, 2 | df-clel 2806 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-clel 2806 |
This theorem is referenced by: elex2 2808 issetlem 2809 elissetv 2810 eleq1w 2812 eleq2w 2813 eleq1d 2814 eleq2d 2815 eleq2dALT 2816 clelabOLD 2876 clabel 2877 nfeld 2910 risset 3226 elex 3489 elrabi 3675 sbcimdv 3848 sbcg 3853 sbcabel 3869 ssel 3972 sselOLD 3973 noel 4327 noelOLD 4328 disjsn 4712 pwpw0 4813 mptpreima 6237 fi1uzind 14485 brfi1indALT 14488 ballotlem2 34103 lfuhgr3 34724 eldm3 35350 eliminable3a 36335 eliminable3b 36336 eliminable-abelv 36341 eliminable-abelab 36342 bj-denoteslem 36343 bj-issetwt 36347 bj-elsngl 36442 wl-dfclab 37058 |
Copyright terms: Public domain | W3C validator |