MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dff1o4 Structured version   Visualization version   GIF version

Theorem dff1o4 6842
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o4 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))

Proof of Theorem dff1o4
StepHypRef Expression
1 dff1o2 6839 . 2 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵))
2 3anass 1093 . 2 ((𝐹 Fn 𝐴 ∧ Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)))
3 df-rn 5684 . . . . . 6 ran 𝐹 = dom 𝐹
43eqeq1i 2733 . . . . 5 (ran 𝐹 = 𝐵 ↔ dom 𝐹 = 𝐵)
54anbi2i 622 . . . 4 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
6 df-fn 6546 . . . 4 (𝐹 Fn 𝐵 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐵))
75, 6bitr4i 278 . . 3 ((Fun 𝐹 ∧ ran 𝐹 = 𝐵) ↔ 𝐹 Fn 𝐵)
87anbi2i 622 . 2 ((𝐹 Fn 𝐴 ∧ (Fun 𝐹 ∧ ran 𝐹 = 𝐵)) ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
91, 2, 83bitri 297 1 (𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴𝐹 Fn 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  w3a 1085   = wceq 1534  ccnv 5672  dom cdm 5673  ran crn 5674  Fun wfun 6537   Fn wfn 6538  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-in 3952  df-ss 3962  df-rn 5684  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550
This theorem is referenced by:  f1ocnv  6846  f1oun  6853  f1o00  6869  f1oi  6872  f1osn  6874  f1oprswap  6878  f1ompt  7116  f1ofveu  7409  f1ocnvd  7667  curry1  8104  curry2  8107  mapsnf1o2  8907  omxpenlem  9092  sbthlem9  9110  compssiso  10392  mptfzshft  15751  invf1o  17746  mgmhmf1o  18654  mhmf1o  18747  grpinvf1o  18959  ghmf1o  19196  rnghmf1o  20385  rhmf1o  20424  srngf1o  20728  lmhmf1o  20925  hmeof1o2  23661  axcontlem2  28770  f1o3d  32406  padct  32496  f1od2  32498  cdleme51finvN  40024  fsovf1od  43437  gricushgr  47174
  Copyright terms: Public domain W3C validator
OSZAR »