![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > el2v | Structured version Visualization version GIF version |
Description: If a proposition is implied by 𝑥 ∈ V and 𝑦 ∈ V (which is true, see vex 3474), then it is true. (Contributed by Peter Mazsa, 13-Oct-2018.) |
Ref | Expression |
---|---|
el2v.1 | ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) |
Ref | Expression |
---|---|
el2v | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3474 | . 2 ⊢ 𝑥 ∈ V | |
2 | vex 3474 | . 2 ⊢ 𝑦 ∈ V | |
3 | el2v.1 | . 2 ⊢ ((𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝜑) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 Vcvv 3470 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 |
This theorem is referenced by: codir 6121 dfco2 6244 1st2val 8016 2nd2val 8017 fnmap 8846 enrefnn 9066 unfi 9191 wemappo 9567 wemapsolem 9568 fin23lem26 10343 seqval 14004 hash2exprb 14459 hashle2prv 14466 mreexexlem4d 17621 pmtrrn2 19409 c0snmgmhm 20395 alexsubALTlem4 23948 elqaalem2 26249 seqsval 28155 upgrex 28899 cusgrsize 29262 erclwwlkref 29824 erclwwlksym 29825 erclwwlknref 29873 erclwwlknsym 29874 eclclwwlkn1 29879 gonanegoal 34957 gonarlem 34999 gonar 35000 fmla0disjsuc 35003 fmlasucdisj 35004 mclsppslem 35188 fneer 35832 curunc 37070 matunitlindflem2 37085 vvdifopab 37727 inxprnres 37759 ineccnvmo 37824 alrmomorn 37825 dfcoss2 37880 dfcoss3 37881 cosscnv 37883 cocossss 37903 cnvcosseq 37904 refressn 37910 antisymressn 37911 trressn 37912 rncossdmcoss 37922 symrelcoss3 37932 1cosscnvxrn 37942 cosscnvssid3 37943 cosscnvssid4 37944 coss0 37946 trcoss 37949 trcoss2 37951 erimeq2 38145 dfeldisj3 38186 dfeldisj4 38187 dfantisymrel5 38229 ismrc 42112 en2pr 42968 pr2cv 42969 ovnsubaddlem1 45949 sprsymrelfvlem 46821 sprsymrelf1lem 46822 prprelb 46847 prprspr2 46849 reuprpr 46854 2exopprim 46856 reuopreuprim 46857 |
Copyright terms: Public domain | W3C validator |