![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funresd | Structured version Visualization version GIF version |
Description: A restriction of a function is a function. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
funresd.1 | ⊢ (𝜑 → Fun 𝐹) |
Ref | Expression |
---|---|
funresd | ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funresd.1 | . 2 ⊢ (𝜑 → Fun 𝐹) | |
2 | funres 6595 | . 2 ⊢ (Fun 𝐹 → Fun (𝐹 ↾ 𝐴)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Fun (𝐹 ↾ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↾ cres 5680 Fun wfun 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-br 5149 df-opab 5211 df-rel 5685 df-cnv 5686 df-co 5687 df-res 5690 df-fun 6550 |
This theorem is referenced by: fnssresb 6677 respreima 7075 frrlem11 8301 frrlem12 8302 frrlem15 9780 gsumzadd 19876 gsum2dlem2 19925 nogesgn1ores 27606 noinfres 27654 noinfbnd2lem1 27662 trlsegvdeglem2 30030 sspg 30537 ssps 30539 sspn 30545 fresf1o 32415 fsupprnfi 32472 gsumhashmul 32770 limsupresxr 45154 liminfresxr 45155 afvco2 46556 |
Copyright terms: Public domain | W3C validator |