![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq1da | Structured version Visualization version GIF version |
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ifeq1da.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq1da | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1da.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) | |
2 | 1 | ifeq1d 4548 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
3 | iffalse 4538 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶) | |
4 | iffalse 4538 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶) | |
5 | 3, 4 | eqtr4d 2771 | . . 3 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
6 | 5 | adantl 481 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
7 | 2, 6 | pm2.61dan 812 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1534 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3430 df-v 3473 df-un 3952 df-if 4530 |
This theorem is referenced by: ifeq12da 4562 cantnflem1d 9712 cantnflem1 9713 dfac12lem1 10167 xrmaxeq 13191 xrmineq 13192 rexmul 13283 max0add 15290 sumeq2ii 15672 fsumser 15709 ramcl 16998 dmdprdsplitlem 19994 coe1pwmul 22198 scmatscmiddistr 22423 mulmarep1gsum1 22488 maducoeval2 22555 madugsum 22558 madurid 22559 ptcld 23530 ibllem 25707 itgvallem3 25728 iblposlem 25734 iblss2 25748 iblmulc2 25773 cnplimc 25829 limcco 25835 dvexp3 25923 dchrinvcl 27199 lgsval2lem 27253 lgsval4lem 27254 lgsneg 27267 lgsmod 27269 lgsdilem2 27279 rpvmasum2 27458 mrsubrn 35123 ftc1anclem6 37171 ftc1anclem8 37173 fsuppind 41823 |
Copyright terms: Public domain | W3C validator |