MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq1da Structured version   Visualization version   GIF version

Theorem ifeq1da 4560
Description: Conditional equality. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypothesis
Ref Expression
ifeq1da.1 ((𝜑𝜓) → 𝐴 = 𝐵)
Assertion
Ref Expression
ifeq1da (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))

Proof of Theorem ifeq1da
StepHypRef Expression
1 ifeq1da.1 . . 3 ((𝜑𝜓) → 𝐴 = 𝐵)
21ifeq1d 4548 . 2 ((𝜑𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
3 iffalse 4538 . . . 4 𝜓 → if(𝜓, 𝐴, 𝐶) = 𝐶)
4 iffalse 4538 . . . 4 𝜓 → if(𝜓, 𝐵, 𝐶) = 𝐶)
53, 4eqtr4d 2771 . . 3 𝜓 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
65adantl 481 . 2 ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
72, 6pm2.61dan 812 1 (𝜑 → if(𝜓, 𝐴, 𝐶) = if(𝜓, 𝐵, 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1534  ifcif 4529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-rab 3430  df-v 3473  df-un 3952  df-if 4530
This theorem is referenced by:  ifeq12da  4562  cantnflem1d  9712  cantnflem1  9713  dfac12lem1  10167  xrmaxeq  13191  xrmineq  13192  rexmul  13283  max0add  15290  sumeq2ii  15672  fsumser  15709  ramcl  16998  dmdprdsplitlem  19994  coe1pwmul  22198  scmatscmiddistr  22423  mulmarep1gsum1  22488  maducoeval2  22555  madugsum  22558  madurid  22559  ptcld  23530  ibllem  25707  itgvallem3  25728  iblposlem  25734  iblss2  25748  iblmulc2  25773  cnplimc  25829  limcco  25835  dvexp3  25923  dchrinvcl  27199  lgsval2lem  27253  lgsval4lem  27254  lgsneg  27267  lgsmod  27269  lgsdilem2  27279  rpvmasum2  27458  mrsubrn  35123  ftc1anclem6  37171  ftc1anclem8  37173  fsuppind  41823
  Copyright terms: Public domain W3C validator
OSZAR »