![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinexg | Structured version Visualization version GIF version |
Description: The existence of a class intersection. 𝑥 is normally a free-variable parameter in 𝐵, which should be read 𝐵(𝑥). (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
iinexg | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 5035 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | 1 | adantl 481 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) |
3 | elisset 2811 | . . . . . . . . 9 ⊢ (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) | |
4 | 3 | rgenw 3062 | . . . . . . . 8 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) |
5 | r19.2z 4495 | . . . . . . . 8 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) | |
6 | 4, 5 | mpan2 690 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵)) |
7 | r19.35 3105 | . . . . . . 7 ⊢ (∃𝑥 ∈ 𝐴 (𝐵 ∈ 𝐶 → ∃𝑦 𝑦 = 𝐵) ↔ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) | |
8 | 6, 7 | sylib 217 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵)) |
9 | 8 | imp 406 | . . . . 5 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵) |
10 | rexcom4 3282 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 𝑦 = 𝐵 ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
11 | 9, 10 | sylib 217 | . . . 4 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) |
12 | abn0 4381 | . . . 4 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∃𝑦∃𝑥 ∈ 𝐴 𝑦 = 𝐵) | |
13 | 11, 12 | sylibr 233 | . . 3 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅) |
14 | intex 5339 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ≠ ∅ ↔ ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) | |
15 | 13, 14 | sylib 217 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ∈ V) |
16 | 2, 15 | eqeltrd 2829 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶) → ∩ 𝑥 ∈ 𝐴 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {cab 2705 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 Vcvv 3471 ∅c0 4323 ∩ cint 4949 ∩ ciin 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4324 df-int 4950 df-iin 4999 |
This theorem is referenced by: fclsval 23925 taylfval 26306 iinexd 44499 smflimlem1 46159 smfliminflem 46218 |
Copyright terms: Public domain | W3C validator |