![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imp43 | Structured version Visualization version GIF version |
Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
Ref | Expression |
---|---|
imp4.1 | ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) |
Ref | Expression |
---|---|
imp43 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imp4.1 | . . 3 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜃 → 𝜏)))) | |
2 | 1 | imp4b 420 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ((𝜒 ∧ 𝜃) → 𝜏)) |
3 | 2 | imp 405 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: fundmen 9060 fiint 9354 ltexprlem6 11070 divgt0 12118 divge0 12119 le2sq2 14137 iscatd 17658 isfuncd 17856 islmodd 20754 lmodvsghm 20811 islssd 20824 basis2 22872 neindisj 23039 dvidlem 25862 spansneleq 31398 elspansn4 31401 adjmul 31920 kbass6 31949 mdsl0 32138 chirredlem1 32218 poimirlem29 37127 rngonegmn1r 37420 3dim1 38944 linepsubN 39229 pmapsub 39245 tgoldbach 47159 |
Copyright terms: Public domain | W3C validator |