MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp43 Structured version   Visualization version   GIF version

Theorem imp43 426
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp4.1 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
Assertion
Ref Expression
imp43 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Proof of Theorem imp43
StepHypRef Expression
1 imp4.1 . . 3 (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))
21imp4b 420 . 2 ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))
32imp 405 1 (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 395
This theorem is referenced by:  fundmen  9060  fiint  9354  ltexprlem6  11070  divgt0  12118  divge0  12119  le2sq2  14137  iscatd  17658  isfuncd  17856  islmodd  20754  lmodvsghm  20811  islssd  20824  basis2  22872  neindisj  23039  dvidlem  25862  spansneleq  31398  elspansn4  31401  adjmul  31920  kbass6  31949  mdsl0  32138  chirredlem1  32218  poimirlem29  37127  rngonegmn1r  37420  3dim1  38944  linepsubN  39229  pmapsub  39245  tgoldbach  47159
  Copyright terms: Public domain W3C validator
OSZAR »