![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > inelros | Structured version Visualization version GIF version |
Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020.) |
Ref | Expression |
---|---|
isros.1 | ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} |
Ref | Expression |
---|---|
inelros | ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfin4 4268 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | |
2 | isros.1 | . . . 4 ⊢ 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥 ∈ 𝑠 ∀𝑦 ∈ 𝑠 ((𝑥 ∪ 𝑦) ∈ 𝑠 ∧ (𝑥 ∖ 𝑦) ∈ 𝑠))} | |
3 | 2 | difelros 33791 | . . 3 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
4 | 2 | difelros 33791 | . . 3 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝐴 ∖ (𝐴 ∖ 𝐵)) ∈ 𝑆) |
5 | 3, 4 | syld3an3 1407 | . 2 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ (𝐴 ∖ 𝐵)) ∈ 𝑆) |
6 | 1, 5 | eqeltrid 2833 | 1 ⊢ ((𝑆 ∈ 𝑄 ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∩ 𝐵) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∀wral 3058 {crab 3429 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4323 𝒫 cpw 4603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 |
This theorem is referenced by: rossros 33799 |
Copyright terms: Public domain | W3C validator |