![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ixpssixp | Structured version Visualization version GIF version |
Description: Subclass theorem for infinite Cartesian product. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
Ref | Expression |
---|---|
ixpssixp.1 | ⊢ Ⅎ𝑥𝜑 |
ixpssixp.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
ixpssixp | ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpssixp.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ixpssixp.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
3 | 2 | ex 411 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝐵 ⊆ 𝐶)) |
4 | 1, 3 | ralrimi 3250 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
5 | ss2ixp 8933 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝜑 → X𝑥 ∈ 𝐴 𝐵 ⊆ X𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 Ⅎwnf 1777 ∈ wcel 2098 ∀wral 3057 ⊆ wss 3947 Xcixp 8920 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-v 3473 df-in 3954 df-ss 3964 df-ixp 8921 |
This theorem is referenced by: ioosshoi 46059 iinhoiicclem 46063 iinhoiicc 46064 iunhoiioo 46066 vonioolem2 46071 vonicclem2 46074 |
Copyright terms: Public domain | W3C validator |