![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulcomi | Structured version Visualization version GIF version |
Description: Commutative law for multiplication. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
mulcomi | ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | mulcom 11224 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7420 ℂcc 11136 · cmul 11143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulcom 11202 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: mulcomli 11253 divmul13i 12005 8th4div3 12462 numma2c 12753 nummul2c 12757 9t11e99 12837 binom2i 14207 fac3 14271 tanval2 16109 pockthi 16875 mod2xnegi 17039 decexp2 17043 decsplit1 17050 decsplit 17051 83prm 17091 dvsincos 25912 sincosq4sgn 26435 2logb9irrALT 26729 ang180lem3 26742 mcubic 26778 cubic2 26779 log2ublem2 26878 log2ublem3 26879 log2ub 26880 basellem8 27019 ppiub 27136 chtub 27144 bposlem8 27223 2lgsoddprmlem2 27341 2lgsoddprmlem3d 27345 ax5seglem7 28745 ex-ind-dvds 30270 ipdirilem 30638 siilem1 30660 bcseqi 30929 h1de2i 31362 dpmul10 32618 dpmul4 32637 signswch 34193 hgt750lem 34283 hgt750lem2 34284 problem4 35272 problem5 35273 quad3 35274 mulcomnni 41458 lcmineqlem23 41522 3lexlogpow5ineq1 41525 arearect 42643 areaquad 42644 wallispilem4 45456 dirkercncflem1 45491 fourierswlem 45618 257prm 46901 fmtno4prmfac 46912 5tcu2e40 46955 41prothprm 46959 tgoldbachlt 47156 zlmodzxzequap 47567 |
Copyright terms: Public domain | W3C validator |