MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0rex Structured version   Visualization version   GIF version

Theorem n0rex 4350
Description: There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020.)
Assertion
Ref Expression
n0rex (𝐴 ≠ ∅ → ∃𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem n0rex
StepHypRef Expression
1 id 22 . . . 4 (𝑥𝐴𝑥𝐴)
21ancli 548 . . 3 (𝑥𝐴 → (𝑥𝐴𝑥𝐴))
32eximi 1830 . 2 (∃𝑥 𝑥𝐴 → ∃𝑥(𝑥𝐴𝑥𝐴))
4 n0 4342 . 2 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
5 df-rex 3066 . 2 (∃𝑥𝐴 𝑥𝐴 ↔ ∃𝑥(𝑥𝐴𝑥𝐴))
63, 4, 53imtr4i 292 1 (𝐴 ≠ ∅ → ∃𝑥𝐴 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1774  wcel 2099  wne 2935  wrex 3065  c0 4318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-ne 2936  df-rex 3066  df-dif 3947  df-nul 4319
This theorem is referenced by:  ssn0rex  4351
  Copyright terms: Public domain W3C validator
OSZAR »