MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfae Structured version   Visualization version   GIF version

Theorem nfae 2427
Description: All variables are effectively bound in an identical variable specifier. Usage of this theorem is discouraged because it depends on ax-13 2366. (Contributed by Mario Carneiro, 11-Aug-2016.) (New usage is discouraged.)
Assertion
Ref Expression
nfae 𝑧𝑥 𝑥 = 𝑦

Proof of Theorem nfae
StepHypRef Expression
1 hbae 2425 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21nf5i 2134 1 𝑧𝑥 𝑥 = 𝑦
Colors of variables: wff setvar class
Syntax hints:  wal 1531  wnf 1777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-10 2129  ax-11 2146  ax-12 2166  ax-13 2366
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778
This theorem is referenced by:  nfnae  2428  axc16nfALT  2431  dral2  2432  drex2  2436  drnf2  2438  sbequ5  2459  2ax6elem  2464  sbco3  2507  axbnd  2697  axrepnd  10623  axunnd  10625  axpowndlem3  10628  axpownd  10630  axregndlem1  10631  axregnd  10633  axacndlem1  10636  axacndlem2  10637  axacndlem3  10638  axacndlem4  10639  axacndlem5  10640  axacnd  10641
  Copyright terms: Public domain W3C validator
OSZAR »