MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopab2 Structured version   Visualization version   GIF version

Theorem nfopab2 5220
Description: The second abstraction variable in an ordered-pair class abstraction is effectively not free. (Contributed by NM, 16-May-1995.) (Revised by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfopab2 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}

Proof of Theorem nfopab2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-opab 5212 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfe1 2139 . . . 4 𝑦𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
32nfex 2312 . . 3 𝑦𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)
43nfab 2897 . 2 𝑦{𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
51, 4nfcxfr 2889 1 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wex 1773  {cab 2702  wnfc 2875  cop 4636  {copab 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-opab 5212
This theorem is referenced by:  rexopabb  5530  ssopab2bw  5549  ssopab2b  5551  0nelopabOLD  5570  dmopab  5918  rnopab  5956  funopab  6589  fvopab5  7037  zfrep6  7959  opabdm  32480  opabrn  32481  fpwrelmap  32597  fineqvrep  34846  bj-opabco  36798  vvdifopab  37862  aomclem8  42627  areaquad  42786  sprsymrelf  46972
  Copyright terms: Public domain W3C validator
OSZAR »