![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfsbcw | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class substitution. Version of nfsbc 3798 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by NM, 7-Sep-2014.) Avoid ax-13 2365. (Revised by Gino Giotto, 10-Jan-2024.) |
Ref | Expression |
---|---|
nfsbcw.1 | ⊢ Ⅎ𝑥𝐴 |
nfsbcw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfsbcw | ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nftru 1798 | . . 3 ⊢ Ⅎ𝑦⊤ | |
2 | nfsbcw.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝐴) |
4 | nfsbcw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | a1i 11 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
6 | 1, 3, 5 | nfsbcdw 3794 | . 2 ⊢ (⊤ → Ⅎ𝑥[𝐴 / 𝑦]𝜑) |
7 | 6 | mptru 1540 | 1 ⊢ Ⅎ𝑥[𝐴 / 𝑦]𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ⊤wtru 1534 Ⅎwnf 1777 Ⅎwnfc 2875 [wsbc 3773 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-sbc 3774 |
This theorem is referenced by: opelopabgf 5542 opelopabf 5547 ralrnmptw 7102 elovmporab 7666 elovmporab1w 7667 ovmpt3rabdm 7679 elovmpt3rab1 7680 dfopab2 8056 dfoprab3s 8057 ralxpes 8140 ralxp3es 8143 frpoins3xpg 8144 frpoins3xp3g 8145 mpoxopoveq 8224 elmptrab 23771 bnj1445 34787 bnj1446 34788 bnj1467 34797 indexa 37318 sdclem1 37328 sbcalf 37699 sbcexf 37700 sbccomieg 42322 rexrabdioph 42323 or2expropbilem2 46520 or2expropbi 46521 ich2exprop 46915 ichnreuop 46916 reuopreuprim 46970 |
Copyright terms: Public domain | W3C validator |