![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notbi | Structured version Visualization version GIF version |
Description: Contraposition. Theorem *4.11 of [WhiteheadRussell] p. 117. (Contributed by NM, 21-May-1994.) (Proof shortened by Wolf Lammen, 12-Jun-2013.) |
Ref | Expression |
---|---|
notbi | ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 317 | . 2 ⊢ ((𝜑 ↔ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | id 22 | . . 3 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 ↔ ¬ 𝜓)) | |
4 | 3 | con4bid 316 | . 2 ⊢ ((¬ 𝜑 ↔ ¬ 𝜓) → (𝜑 ↔ 𝜓)) |
5 | 2, 4 | impbii 208 | 1 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: notbii 319 con4bii 320 con2bi 352 nbn2 369 pm5.32 572 norass 1531 hadnot 1596 had0 1598 cbvexdw 2330 cbvexd 2402 rexbiOLD 3095 rexprg 4705 isocnv3 7344 suppimacnv 8188 sumodd 16390 f1omvdco3 19447 ist0cld 33635 onsuct0 36136 bj-cbvexdv 36488 wl-3xornot 37171 ifpbi1 43127 ifpbi13 43139 abciffcbatnabciffncba 46527 abciffcbatnabciffncbai 46528 ichn 47011 |
Copyright terms: Public domain | W3C validator |