MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  con4bii Structured version   Visualization version   GIF version

Theorem con4bii 320
Description: A contraposition inference. (Contributed by NM, 21-May-1994.)
Hypothesis
Ref Expression
con4bii.1 𝜑 ↔ ¬ 𝜓)
Assertion
Ref Expression
con4bii (𝜑𝜓)

Proof of Theorem con4bii
StepHypRef Expression
1 con4bii.1 . 2 𝜑 ↔ ¬ 𝜓)
2 notbi 318 . 2 ((𝜑𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓))
31, 2mpbir 230 1 (𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  2false  374  equsexvw  2000  cbvexv1  2332  cbvex2v  2334  cbvex  2392  cbvex2  2405  2ralorOLD  3220  rexcom  3278  cbvrexfw  3293  ceqsex  3514  ceqsexv  3516  gencbval  3528  ceqsralbv  3641  snnzb  4723  raldifsnb  4800  uni0b  4936  opab0  5555  tsna1  37687  ralopabb  42906
  Copyright terms: Public domain W3C validator
OSZAR »