![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > con4bii | Structured version Visualization version GIF version |
Description: A contraposition inference. (Contributed by NM, 21-May-1994.) |
Ref | Expression |
---|---|
con4bii.1 | ⊢ (¬ 𝜑 ↔ ¬ 𝜓) |
Ref | Expression |
---|---|
con4bii | ⊢ (𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | con4bii.1 | . 2 ⊢ (¬ 𝜑 ↔ ¬ 𝜓) | |
2 | notbi 318 | . 2 ⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) | |
3 | 1, 2 | mpbir 230 | 1 ⊢ (𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 2false 374 equsexvw 2000 cbvexv1 2332 cbvex2v 2334 cbvex 2392 cbvex2 2405 2ralorOLD 3220 rexcom 3278 cbvrexfw 3293 ceqsex 3514 ceqsexv 3516 gencbval 3528 ceqsralbv 3641 snnzb 4723 raldifsnb 4800 uni0b 4936 opab0 5555 tsna1 37687 ralopabb 42906 |
Copyright terms: Public domain | W3C validator |