MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsexv Structured version   Visualization version   GIF version

Theorem ceqsexv 3515
Description: Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 2-Mar-1995.) Avoid ax-12 2166. (Revised by Gino Giotto, 12-Oct-2024.) (Proof shortened by Wolf Lammen, 22-Jan-2025.)
Hypotheses
Ref Expression
ceqsexv.1 𝐴 ∈ V
ceqsexv.2 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ceqsexv (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ceqsexv
StepHypRef Expression
1 alinexa 1837 . . 3 (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ ∃𝑥(𝑥 = 𝐴𝜑))
2 ceqsexv.1 . . . 4 𝐴 ∈ V
3 ceqsexv.2 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
43notbid 317 . . . 4 (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓))
52, 4ceqsalv 3501 . . 3 (∀𝑥(𝑥 = 𝐴 → ¬ 𝜑) ↔ ¬ 𝜓)
61, 5bitr3i 276 . 2 (¬ ∃𝑥(𝑥 = 𝐴𝜑) ↔ ¬ 𝜓)
76con4bii 320 1 (∃𝑥(𝑥 = 𝐴𝜑) ↔ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wal 1531   = wceq 1533  wex 1773  wcel 2098  Vcvv 3463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1774  df-clel 2802
This theorem is referenced by:  ceqsexv2d  3518  ceqsex2v  3520  ceqsex3v  3521  gencbvex  3525  euxfr2w  3707  euxfr2  3709  inuni  5340  eqvinop  5483  elvvv  5747  dmfco  6989  fndmdif  7046  fndmin  7049  fmptco  7134  abrexco  7250  imaeqsexv  7367  imaeqexov  7656  uniuni  7762  elxp4  7928  elxp5  7929  brtpos2  8236  xpsnen  9078  xpcomco  9085  xpassen  9089  brttrcl2  9737  dfac5lem2  10147  cf0  10274  ltexprlem4  11062  pceu  16814  4sqlem12  16924  vdwapun  16942  gsumval3eu  19863  dprd2d2  20005  znleval  21492  metrest  24451  sleadd1  27924  addsuniflem  27936  addsasslem1  27938  addsasslem2  27939  mulsuniflem  28071  addsdilem1  28073  addsdilem2  28074  mulsasslem1  28085  mulsasslem2  28086  renegscl  28270  readdscl  28271  remulscl  28274  fmptcof2  32488  fpwrelmapffslem  32559  cusgredgex  34788  dfdm5  35425  dfrn5  35426  elima4  35428  brtxp  35533  brpprod  35538  elfix  35556  dfiota3  35576  brimg  35590  brapply  35591  brsuccf  35594  funpartlem  35595  brrestrict  35602  dfrecs2  35603  dfrdg4  35604  lshpsmreu  38637  isopos  38708  islpln5  39064  islvol5  39108  cdlemftr3  40094  dibelval3  40676  dicelval3  40709  mapdpglem3  41204  hdmapglem7a  41456  diophrex  42260
  Copyright terms: Public domain W3C validator
OSZAR »