MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orel2 Structured version   Visualization version   GIF version

Theorem orel2 888
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.)
Assertion
Ref Expression
orel2 𝜑 → ((𝜓𝜑) → 𝜓))

Proof of Theorem orel2
StepHypRef Expression
1 idd 24 . 2 𝜑 → (𝜓𝜓))
2 pm2.21 123 . 2 𝜑 → (𝜑𝜓))
31, 2jaod 857 1 𝜑 → ((𝜓𝜑) → 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 846
This theorem is referenced by:  pm2.64  939  pm2.74  972  pm5.61  998  pm5.71  1025  3orel3  1481  xpcan2  6186  funun  6604  fnpr2ob  17547  ablfac1eulem  20036  drngmuleq0  20662  mdetunilem9  22542  maducoeval2  22562  tdeglem4OLD  26016  deg1sublt  26066  dgrnznn  26201  dvply1  26238  aaliou2  26295  colline  28473  axcontlem2  28796  dfrdg4  35580  arg-ax  35933  unbdqndv2lem2  36018  elpell14qr2  42313  elpell1qr2  42323  jm2.22  42447  jm2.23  42448  jm2.26lem3  42453  ttac  42488  wepwsolem  42497  3ornot23VD  44317  fmul01lt1lem2  45002  cncfiooicclem1  45310
  Copyright terms: Public domain W3C validator
OSZAR »