![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orel2 | Structured version Visualization version GIF version |
Description: Elimination of disjunction by denial of a disjunct. Theorem *2.56 of [WhiteheadRussell] p. 107. (Contributed by NM, 12-Aug-1994.) (Proof shortened by Wolf Lammen, 5-Apr-2013.) |
Ref | Expression |
---|---|
orel2 | ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (¬ 𝜑 → (𝜓 → 𝜓)) | |
2 | pm2.21 123 | . 2 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
3 | 1, 2 | jaod 857 | 1 ⊢ (¬ 𝜑 → ((𝜓 ∨ 𝜑) → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 846 |
This theorem is referenced by: pm2.64 939 pm2.74 972 pm5.61 998 pm5.71 1025 3orel3 1481 xpcan2 6186 funun 6604 fnpr2ob 17547 ablfac1eulem 20036 drngmuleq0 20662 mdetunilem9 22542 maducoeval2 22562 tdeglem4OLD 26016 deg1sublt 26066 dgrnznn 26201 dvply1 26238 aaliou2 26295 colline 28473 axcontlem2 28796 dfrdg4 35580 arg-ax 35933 unbdqndv2lem2 36018 elpell14qr2 42313 elpell1qr2 42323 jm2.22 42447 jm2.23 42448 jm2.26lem3 42453 ttac 42488 wepwsolem 42497 3ornot23VD 44317 fmul01lt1lem2 45002 cncfiooicclem1 45310 |
Copyright terms: Public domain | W3C validator |