![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dgrnznn | Structured version Visualization version GIF version |
Description: A nonzero polynomial with a root has positive degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
Ref | Expression |
---|---|
dgrnznn | ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {(𝑃‘0)})) | |
2 | 1 | fveq1d 6899 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘𝐴) = ((ℂ × {(𝑃‘0)})‘𝐴)) |
3 | simplr 768 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘𝐴) = 0) | |
4 | fvex 6910 | . . . . . . . . . . . . . 14 ⊢ (𝑃‘0) ∈ V | |
5 | 4 | fvconst2 7216 | . . . . . . . . . . . . 13 ⊢ (𝐴 ∈ ℂ → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0)) |
6 | 5 | ad2antrr 725 | . . . . . . . . . . . 12 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → ((ℂ × {(𝑃‘0)})‘𝐴) = (𝑃‘0)) |
7 | 2, 3, 6 | 3eqtr3rd 2777 | . . . . . . . . . . 11 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (𝑃‘0) = 0) |
8 | 7 | sneqd 4641 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → {(𝑃‘0)} = {0}) |
9 | 8 | xpeq2d 5708 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → (ℂ × {(𝑃‘0)}) = (ℂ × {0})) |
10 | 1, 9 | eqtrd 2768 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = (ℂ × {0})) |
11 | df-0p 25598 | . . . . . . . 8 ⊢ 0𝑝 = (ℂ × {0}) | |
12 | 10, 11 | eqtr4di 2786 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) ∧ 𝑃 = (ℂ × {(𝑃‘0)})) → 𝑃 = 0𝑝) |
13 | 12 | ex 412 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) → (𝑃 = (ℂ × {(𝑃‘0)}) → 𝑃 = 0𝑝)) |
14 | 13 | necon3ad 2950 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0) → (𝑃 ≠ 0𝑝 → ¬ 𝑃 = (ℂ × {(𝑃‘0)}))) |
15 | 14 | impcom 407 | . . . 4 ⊢ ((𝑃 ≠ 0𝑝 ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)})) |
16 | 15 | adantll 713 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ 𝑃 = (ℂ × {(𝑃‘0)})) |
17 | 0dgrb 26179 | . . . 4 ⊢ (𝑃 ∈ (Poly‘𝑆) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)}))) | |
18 | 17 | ad2antrr 725 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ((deg‘𝑃) = 0 ↔ 𝑃 = (ℂ × {(𝑃‘0)}))) |
19 | 16, 18 | mtbird 325 | . 2 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ¬ (deg‘𝑃) = 0) |
20 | dgrcl 26166 | . . . 4 ⊢ (𝑃 ∈ (Poly‘𝑆) → (deg‘𝑃) ∈ ℕ0) | |
21 | 20 | ad2antrr 725 | . . 3 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ0) |
22 | elnn0 12504 | . . 3 ⊢ ((deg‘𝑃) ∈ ℕ0 ↔ ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0)) | |
23 | 21, 22 | sylib 217 | . 2 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → ((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0)) |
24 | orel2 889 | . 2 ⊢ (¬ (deg‘𝑃) = 0 → (((deg‘𝑃) ∈ ℕ ∨ (deg‘𝑃) = 0) → (deg‘𝑃) ∈ ℕ)) | |
25 | 19, 23, 24 | sylc 65 | 1 ⊢ (((𝑃 ∈ (Poly‘𝑆) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (deg‘𝑃) ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 {csn 4629 × cxp 5676 ‘cfv 6548 ℂcc 11136 0cc0 11138 ℕcn 12242 ℕ0cn0 12502 0𝑝c0p 25597 Polycply 26117 degcdgr 26120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-pm 8847 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-div 11902 df-nn 12243 df-2 12305 df-3 12306 df-n0 12503 df-z 12589 df-uz 12853 df-rp 13007 df-fz 13517 df-fzo 13660 df-fl 13789 df-seq 13999 df-exp 14059 df-hash 14322 df-cj 15078 df-re 15079 df-im 15080 df-sqrt 15214 df-abs 15215 df-clim 15464 df-rlim 15465 df-sum 15665 df-0p 25598 df-ply 26121 df-coe 26123 df-dgr 26124 |
This theorem is referenced by: dgraalem 42569 dgraaub 42572 etransclem47 45669 |
Copyright terms: Public domain | W3C validator |