Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dgraaub Structured version   Visualization version   GIF version

Theorem dgraaub 42572
Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.)
Assertion
Ref Expression
dgraaub (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))

Proof of Theorem dgraaub
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 770 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ ℂ)
2 eldifsn 4791 . . . . . . 7 (𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ↔ (𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝))
32biimpri 227 . . . . . 6 ((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
43adantr 480 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}))
5 simprr 772 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (𝑃𝐴) = 0)
6 fveq1 6896 . . . . . . 7 (𝑎 = 𝑃 → (𝑎𝐴) = (𝑃𝐴))
76eqeq1d 2730 . . . . . 6 (𝑎 = 𝑃 → ((𝑎𝐴) = 0 ↔ (𝑃𝐴) = 0))
87rspcev 3609 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ (𝑃𝐴) = 0) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
94, 5, 8syl2anc 583 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0)
10 elqaa 26270 . . . 4 (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑎 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑎𝐴) = 0))
111, 9, 10sylanbrc 582 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → 𝐴 ∈ 𝔸)
12 dgraaval 42568 . . 3 (𝐴 ∈ 𝔸 → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
1311, 12syl 17 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) = inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ))
14 ssrab2 4075 . . . 4 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ ℕ
15 nnuz 12896 . . . 4 ℕ = (ℤ‘1)
1614, 15sseqtri 4016 . . 3 {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1)
17 dgrnznn 26194 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ ℕ)
18 eqid 2728 . . . . . 6 (deg‘𝑃) = (deg‘𝑃)
195, 18jctil 519 . . . . 5 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0))
20 fveqeq2 6906 . . . . . . 7 (𝑏 = 𝑃 → ((deg‘𝑏) = (deg‘𝑃) ↔ (deg‘𝑃) = (deg‘𝑃)))
21 fveq1 6896 . . . . . . . 8 (𝑏 = 𝑃 → (𝑏𝐴) = (𝑃𝐴))
2221eqeq1d 2730 . . . . . . 7 (𝑏 = 𝑃 → ((𝑏𝐴) = 0 ↔ (𝑃𝐴) = 0))
2320, 22anbi12d 631 . . . . . 6 (𝑏 = 𝑃 → (((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)))
2423rspcev 3609 . . . . 5 ((𝑃 ∈ ((Poly‘ℚ) ∖ {0𝑝}) ∧ ((deg‘𝑃) = (deg‘𝑃) ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
254, 19, 24syl2anc 583 . . . 4 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0))
26 eqeq2 2740 . . . . . . 7 (𝑎 = (deg‘𝑃) → ((deg‘𝑏) = 𝑎 ↔ (deg‘𝑏) = (deg‘𝑃)))
2726anbi1d 630 . . . . . 6 (𝑎 = (deg‘𝑃) → (((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2827rexbidv 3175 . . . . 5 (𝑎 = (deg‘𝑃) → (∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0) ↔ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
2928elrab 3682 . . . 4 ((deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ↔ ((deg‘𝑃) ∈ ℕ ∧ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = (deg‘𝑃) ∧ (𝑏𝐴) = 0)))
3017, 25, 29sylanbrc 582 . . 3 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)})
31 infssuzle 12946 . . 3 (({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)} ⊆ (ℤ‘1) ∧ (deg‘𝑃) ∈ {𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3216, 30, 31sylancr 586 . 2 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → inf({𝑎 ∈ ℕ ∣ ∃𝑏 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑏) = 𝑎 ∧ (𝑏𝐴) = 0)}, ℝ, < ) ≤ (deg‘𝑃))
3313, 32eqbrtrd 5170 1 (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃𝐴) = 0)) → (degAA𝐴) ≤ (deg‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2937  wrex 3067  {crab 3429  cdif 3944  wss 3947  {csn 4629   class class class wbr 5148  cfv 6548  infcinf 9465  cc 11137  cr 11138  0cc0 11139  1c1 11140   < clt 11279  cle 11280  cn 12243  cuz 12853  cq 12963  0𝑝c0p 25611  Polycply 26131  degcdgr 26134  𝔸caa 26262  degAAcdgraa 42564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-inf2 9665  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-isom 6557  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-oi 9534  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-n0 12504  df-z 12590  df-uz 12854  df-q 12964  df-rp 13008  df-fz 13518  df-fzo 13661  df-fl 13790  df-mod 13868  df-seq 14000  df-exp 14060  df-hash 14323  df-cj 15079  df-re 15080  df-im 15081  df-sqrt 15215  df-abs 15216  df-clim 15465  df-rlim 15466  df-sum 15666  df-0p 25612  df-ply 26135  df-coe 26137  df-dgr 26138  df-aa 26263  df-dgraa 42566
This theorem is referenced by:  dgraa0p  42573
  Copyright terms: Public domain W3C validator
OSZAR »