![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvconst2 | Structured version Visualization version GIF version |
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.) |
Ref | Expression |
---|---|
fvconst2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fvconst2 | ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fvconst2g 7208 | . 2 ⊢ ((𝐵 ∈ V ∧ 𝐶 ∈ 𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵) | |
3 | 1, 2 | mpan 689 | 1 ⊢ (𝐶 ∈ 𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 Vcvv 3470 {csn 4624 × cxp 5670 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 |
This theorem is referenced by: ovconst2 7595 mapsncnv 8905 ofsubeq0 12233 ofsubge0 12235 ser0f 14046 hashinf 14320 iserge0 15633 iseraltlem1 15654 sum0 15693 sumz 15694 harmonic 15831 prodf1f 15864 fprodntriv 15912 prod1 15914 setcmon 18069 0mhm 18764 mulgfval 19018 mulgpropd 19064 dprdsubg 19974 pwspjmhmmgpd 20257 0lmhm 20918 frlmlmod 21676 frlmlss 21678 frlmbas 21682 frlmip 21705 islindf4 21765 mplsubglem 21934 coe1tm 22185 mdetuni0 22516 txkgen 23549 xkofvcn 23581 nmo0 24645 pcorevlem 24946 rrxip 25311 mbfpos 25573 0pval 25593 0pledm 25595 xrge0f 25654 itg2ge0 25658 ibl0 25709 bddibl 25762 dvcmul 25868 dvef 25905 rolle 25915 dveq0 25926 dv11cn 25927 ftc2 25972 tdeglem4 25988 tdeglem4OLD 25989 ply1rem 26093 fta1g 26097 fta1blem 26098 0dgrb 26173 dgrnznn 26174 dgrlt 26194 plymul0or 26208 plydivlem4 26224 plyrem 26233 fta1 26236 vieta1lem2 26239 elqaalem3 26249 aaliou2 26268 ulmdvlem1 26329 dchrelbas2 27163 dchrisumlem3 27417 noetasuplem4 27662 noetainflem4 27666 axlowdimlem9 28754 axlowdimlem12 28757 axlowdimlem17 28762 0oval 30591 occllem 31106 ho01i 31631 0cnfn 31783 0lnfn 31788 nmfn0 31790 nlelchi 31864 opsqrlem2 31944 opsqrlem4 31946 opsqrlem5 31947 hmopidmchi 31954 elrspunidl 33138 lbsdiflsp0 33314 evls1maprnss 33365 breprexpnat 34260 circlemethnat 34267 circlevma 34268 connpconn 34839 txsconnlem 34844 cvxsconn 34847 cvmliftphtlem 34921 fullfunfv 35537 matunitlindflem1 37083 matunitlindflem2 37084 ptrecube 37087 poimirlem1 37088 poimirlem2 37089 poimirlem3 37090 poimirlem4 37091 poimirlem5 37092 poimirlem6 37093 poimirlem7 37094 poimirlem10 37097 poimirlem11 37098 poimirlem12 37099 poimirlem16 37103 poimirlem17 37104 poimirlem19 37106 poimirlem20 37107 poimirlem22 37109 poimirlem23 37110 poimirlem28 37115 poimirlem29 37116 poimirlem30 37117 poimirlem31 37118 poimirlem32 37119 poimir 37120 broucube 37121 mblfinlem2 37125 itg2addnclem 37138 itg2addnc 37141 ftc1anclem5 37164 ftc2nc 37169 cnpwstotbnd 37264 lfl0f 38535 eqlkr2 38566 lcd0vvalN 41080 frlm0vald 41763 evlsvvval 41790 selvvvval 41812 evlselv 41814 mzpsubst 42162 mzpcompact2lem 42165 mzpcong 42387 hbtlem2 42542 mncn0 42557 mpaaeu 42568 aaitgo 42580 rngunsnply 42591 cantnfresb 42747 hashnzfzclim 43753 ofsubid 43755 dvconstbi 43765 binomcxplemnotnn0 43787 n0p 44401 snelmap 44442 fvconst0ci 47905 fvconstdomi 47906 aacllem 48228 |
Copyright terms: Public domain | W3C validator |