![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem9 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28785. Calculate the value of 𝑃 away from three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem9 | ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6898 | . 2 ⊢ (𝑃‘𝐾) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) |
3 | eldifsn 4791 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) ↔ (𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3)) | |
4 | disjdif 4472 | . . . . 5 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
5 | 3ex 12325 | . . . . . . 7 ⊢ 3 ∈ V | |
6 | negex 11489 | . . . . . . 7 ⊢ -1 ∈ V | |
7 | 5, 6 | fnsn 6611 | . . . . . 6 ⊢ {〈3, -1〉} Fn {3} |
8 | c0ex 11239 | . . . . . . . 8 ⊢ 0 ∈ V | |
9 | 8 | fconst 6783 | . . . . . . 7 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
10 | ffn 6722 | . . . . . . 7 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
11 | 9, 10 | ax-mp 5 | . . . . . 6 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
12 | fvun2 6990 | . . . . . 6 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3}))) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) | |
13 | 7, 11, 12 | mp3an12 1448 | . . . . 5 ⊢ ((({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 𝐾 ∈ ((1...𝑁) ∖ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
14 | 4, 13 | mpan 689 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = ((((1...𝑁) ∖ {3}) × {0})‘𝐾)) |
15 | 8 | fvconst2 7216 | . . . 4 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → ((((1...𝑁) ∖ {3}) × {0})‘𝐾) = 0) |
16 | 14, 15 | eqtrd 2768 | . . 3 ⊢ (𝐾 ∈ ((1...𝑁) ∖ {3}) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
17 | 3, 16 | sylbir 234 | . 2 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘𝐾) = 0) |
18 | 2, 17 | eqtrid 2780 | 1 ⊢ ((𝐾 ∈ (1...𝑁) ∧ 𝐾 ≠ 3) → (𝑃‘𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∖ cdif 3944 ∪ cun 3945 ∩ cin 3946 ∅c0 4323 {csn 4629 〈cop 4635 × cxp 5676 Fn wfn 6543 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 0cc0 11139 1c1 11140 -cneg 11476 3c3 12299 ...cfz 13517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-mulcl 11201 ax-i2m1 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 df-neg 11478 df-2 12306 df-3 12307 |
This theorem is referenced by: axlowdimlem16 28781 axlowdimlem17 28782 |
Copyright terms: Public domain | W3C validator |