MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axlowdimlem8 Structured version   Visualization version   GIF version

Theorem axlowdimlem8 28780
Description: Lemma for axlowdim 28792. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.)
Hypothesis
Ref Expression
axlowdimlem7.1 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
Assertion
Ref Expression
axlowdimlem8 (𝑃‘3) = -1

Proof of Theorem axlowdimlem8
StepHypRef Expression
1 axlowdimlem7.1 . . 3 𝑃 = ({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))
21fveq1i 6903 . 2 (𝑃‘3) = (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3)
3 3ex 12332 . . . 4 3 ∈ V
4 negex 11496 . . . 4 -1 ∈ V
53, 4fnsn 6616 . . 3 {⟨3, -1⟩} Fn {3}
6 c0ex 11246 . . . . 5 0 ∈ V
76fconst 6788 . . . 4 (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0}
8 ffn 6727 . . . 4 ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}))
97, 8ax-mp 5 . . 3 (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})
10 disjdif 4475 . . . 4 ({3} ∩ ((1...𝑁) ∖ {3})) = ∅
113snid 4669 . . . 4 3 ∈ {3}
1210, 11pm3.2i 469 . . 3 (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})
13 fvun1 6994 . . 3 (({⟨3, -1⟩} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({⟨3, -1⟩}‘3))
145, 9, 12, 13mp3an 1457 . 2 (({⟨3, -1⟩} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({⟨3, -1⟩}‘3)
153, 4fvsn 7196 . 2 ({⟨3, -1⟩}‘3) = -1
162, 14, 153eqtri 2760 1 (𝑃‘3) = -1
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1533  wcel 2098  cdif 3946  cun 3947  cin 3948  c0 4326  {csn 4632  cop 4638   × cxp 5680   Fn wfn 6548  wf 6549  cfv 6553  (class class class)co 7426  0cc0 11146  1c1 11147  -cneg 11483  3c3 12306  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-mulcl 11208  ax-i2m1 11214
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-fv 6561  df-ov 7429  df-neg 11485  df-2 12313  df-3 12314
This theorem is referenced by:  axlowdimlem16  28788
  Copyright terms: Public domain W3C validator
OSZAR »