![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axlowdimlem8 | Structured version Visualization version GIF version |
Description: Lemma for axlowdim 28792. Calculate the value of 𝑃 at three. (Contributed by Scott Fenton, 21-Apr-2013.) |
Ref | Expression |
---|---|
axlowdimlem7.1 | ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) |
Ref | Expression |
---|---|
axlowdimlem8 | ⊢ (𝑃‘3) = -1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axlowdimlem7.1 | . . 3 ⊢ 𝑃 = ({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0})) | |
2 | 1 | fveq1i 6903 | . 2 ⊢ (𝑃‘3) = (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) |
3 | 3ex 12332 | . . . 4 ⊢ 3 ∈ V | |
4 | negex 11496 | . . . 4 ⊢ -1 ∈ V | |
5 | 3, 4 | fnsn 6616 | . . 3 ⊢ {〈3, -1〉} Fn {3} |
6 | c0ex 11246 | . . . . 5 ⊢ 0 ∈ V | |
7 | 6 | fconst 6788 | . . . 4 ⊢ (((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} |
8 | ffn 6727 | . . . 4 ⊢ ((((1...𝑁) ∖ {3}) × {0}):((1...𝑁) ∖ {3})⟶{0} → (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3})) | |
9 | 7, 8 | ax-mp 5 | . . 3 ⊢ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) |
10 | disjdif 4475 | . . . 4 ⊢ ({3} ∩ ((1...𝑁) ∖ {3})) = ∅ | |
11 | 3 | snid 4669 | . . . 4 ⊢ 3 ∈ {3} |
12 | 10, 11 | pm3.2i 469 | . . 3 ⊢ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3}) |
13 | fvun1 6994 | . . 3 ⊢ (({〈3, -1〉} Fn {3} ∧ (((1...𝑁) ∖ {3}) × {0}) Fn ((1...𝑁) ∖ {3}) ∧ (({3} ∩ ((1...𝑁) ∖ {3})) = ∅ ∧ 3 ∈ {3})) → (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3)) | |
14 | 5, 9, 12, 13 | mp3an 1457 | . 2 ⊢ (({〈3, -1〉} ∪ (((1...𝑁) ∖ {3}) × {0}))‘3) = ({〈3, -1〉}‘3) |
15 | 3, 4 | fvsn 7196 | . 2 ⊢ ({〈3, -1〉}‘3) = -1 |
16 | 2, 14, 15 | 3eqtri 2760 | 1 ⊢ (𝑃‘3) = -1 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∖ cdif 3946 ∪ cun 3947 ∩ cin 3948 ∅c0 4326 {csn 4632 〈cop 4638 × cxp 5680 Fn wfn 6548 ⟶wf 6549 ‘cfv 6553 (class class class)co 7426 0cc0 11146 1c1 11147 -cneg 11483 3c3 12306 ...cfz 13524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-mulcl 11208 ax-i2m1 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-ov 7429 df-neg 11485 df-2 12313 df-3 12314 |
This theorem is referenced by: axlowdimlem16 28788 |
Copyright terms: Public domain | W3C validator |