MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovconst2 Structured version   Visualization version   GIF version

Theorem ovconst2 7601
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
Hypothesis
Ref Expression
oprvalconst2.1 𝐶 ∈ V
Assertion
Ref Expression
ovconst2 ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)

Proof of Theorem ovconst2
StepHypRef Expression
1 df-ov 7423 . 2 (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩)
2 opelxpi 5715 . . 3 ((𝑅𝐴𝑆𝐵) → ⟨𝑅, 𝑆⟩ ∈ (𝐴 × 𝐵))
3 oprvalconst2.1 . . . 4 𝐶 ∈ V
43fvconst2 7216 . . 3 (⟨𝑅, 𝑆⟩ ∈ (𝐴 × 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩) = 𝐶)
52, 4syl 17 . 2 ((𝑅𝐴𝑆𝐵) → (((𝐴 × 𝐵) × {𝐶})‘⟨𝑅, 𝑆⟩) = 𝐶)
61, 5eqtrid 2780 1 ((𝑅𝐴𝑆𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  cop 4635   × cxp 5676  cfv 6548  (class class class)co 7420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423
This theorem is referenced by:  indthinc  48058  indthincALT  48059
  Copyright terms: Public domain W3C validator
OSZAR »