![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ovconst2 | Structured version Visualization version GIF version |
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.) |
Ref | Expression |
---|---|
oprvalconst2.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
ovconst2 | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 7423 | . 2 ⊢ (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = (((𝐴 × 𝐵) × {𝐶})‘〈𝑅, 𝑆〉) | |
2 | opelxpi 5715 | . . 3 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → 〈𝑅, 𝑆〉 ∈ (𝐴 × 𝐵)) | |
3 | oprvalconst2.1 | . . . 4 ⊢ 𝐶 ∈ V | |
4 | 3 | fvconst2 7216 | . . 3 ⊢ (〈𝑅, 𝑆〉 ∈ (𝐴 × 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘〈𝑅, 𝑆〉) = 𝐶) |
5 | 2, 4 | syl 17 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘〈𝑅, 𝑆〉) = 𝐶) |
6 | 1, 5 | eqtrid 2780 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 〈cop 4635 × cxp 5676 ‘cfv 6548 (class class class)co 7420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-ov 7423 |
This theorem is referenced by: indthinc 48058 indthincALT 48059 |
Copyright terms: Public domain | W3C validator |