Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  poimir Structured version   Visualization version   GIF version

Theorem poimir 37131
Description: Poincare-Miranda theorem. Theorem on [Kulpa] p. 547. (Contributed by Brendan Leahy, 21-Aug-2020.)
Hypotheses
Ref Expression
poimir.0 (𝜑𝑁 ∈ ℕ)
poimir.i 𝐼 = ((0[,]1) ↑m (1...𝑁))
poimir.r 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
poimir.1 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
poimir.2 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
poimir.3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
Assertion
Ref Expression
poimir (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
Distinct variable groups:   𝑧,𝑛,𝜑   𝑛,𝐹   𝑛,𝑁   𝜑,𝑧   𝑧,𝐹   𝑧,𝑁   𝑛,𝑐,𝑧,𝜑   𝐹,𝑐   𝐼,𝑐,𝑛,𝑧   𝑁,𝑐   𝑅,𝑐,𝑛,𝑧

Proof of Theorem poimir
Dummy variables 𝑥 𝑟 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poimir.0 . . 3 (𝜑𝑁 ∈ ℕ)
2 poimir.i . . 3 𝐼 = ((0[,]1) ↑m (1...𝑁))
3 poimir.r . . 3 𝑅 = (∏t‘((1...𝑁) × {(topGen‘ran (,))}))
4 poimir.1 . . 3 (𝜑𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅))
5 poimir.2 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 0)) → ((𝐹𝑧)‘𝑛) ≤ 0)
6 poimir.3 . . 3 ((𝜑 ∧ (𝑛 ∈ (1...𝑁) ∧ 𝑧𝐼 ∧ (𝑧𝑛) = 1)) → 0 ≤ ((𝐹𝑧)‘𝑛))
71, 2, 3, 4, 5, 6poimirlem32 37130 . 2 (𝜑 → ∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
8 ovex 7457 . . . . . . . . . . . . . . . . . . . . . 22 (1...𝑁) ∈ V
9 retopon 24698 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
103pttoponconst 23519 . . . . . . . . . . . . . . . . . . . . . 22 (((1...𝑁) ∈ V ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ)) → 𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁))))
118, 9, 10mp2an 690 . . . . . . . . . . . . . . . . . . . . 21 𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁)))
1211topontopi 22835 . . . . . . . . . . . . . . . . . . . 20 𝑅 ∈ Top
13 reex 11235 . . . . . . . . . . . . . . . . . . . . . 22 ℝ ∈ V
14 unitssre 13514 . . . . . . . . . . . . . . . . . . . . . 22 (0[,]1) ⊆ ℝ
15 mapss 8912 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ ∈ V ∧ (0[,]1) ⊆ ℝ) → ((0[,]1) ↑m (1...𝑁)) ⊆ (ℝ ↑m (1...𝑁)))
1613, 14, 15mp2an 690 . . . . . . . . . . . . . . . . . . . . 21 ((0[,]1) ↑m (1...𝑁)) ⊆ (ℝ ↑m (1...𝑁))
172, 16eqsstri 4014 . . . . . . . . . . . . . . . . . . . 20 𝐼 ⊆ (ℝ ↑m (1...𝑁))
1811toponunii 22836 . . . . . . . . . . . . . . . . . . . . 21 (ℝ ↑m (1...𝑁)) = 𝑅
1918restuni 23084 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Top ∧ 𝐼 ⊆ (ℝ ↑m (1...𝑁))) → 𝐼 = (𝑅t 𝐼))
2012, 17, 19mp2an 690 . . . . . . . . . . . . . . . . . . 19 𝐼 = (𝑅t 𝐼)
2120, 18cnf 23168 . . . . . . . . . . . . . . . . . 18 (𝐹 ∈ ((𝑅t 𝐼) Cn 𝑅) → 𝐹:𝐼⟶(ℝ ↑m (1...𝑁)))
224, 21syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐹:𝐼⟶(ℝ ↑m (1...𝑁)))
2322ffvelcdmda 7097 . . . . . . . . . . . . . . . 16 ((𝜑𝑐𝐼) → (𝐹𝑐) ∈ (ℝ ↑m (1...𝑁)))
24 elmapi 8872 . . . . . . . . . . . . . . . 16 ((𝐹𝑐) ∈ (ℝ ↑m (1...𝑁)) → (𝐹𝑐):(1...𝑁)⟶ℝ)
2523, 24syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑐𝐼) → (𝐹𝑐):(1...𝑁)⟶ℝ)
2625ffvelcdmda 7097 . . . . . . . . . . . . . 14 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑐)‘𝑛) ∈ ℝ)
27 recn 11234 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((𝐹𝑐)‘𝑛) ∈ ℂ)
28 absrpcl 15273 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℂ ∧ ((𝐹𝑐)‘𝑛) ≠ 0) → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+)
2928ex 411 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℂ → (((𝐹𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+))
3027, 29syl 17 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+))
31 ltsubrp 13048 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛))
32 ltaddrp 13049 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))
3331, 32jca 510 . . . . . . . . . . . . . . . . 17 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))
3433ex 411 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ+ → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
3530, 34syld 47 . . . . . . . . . . . . . . 15 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
3627abscld 15421 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑐)‘𝑛) ∈ ℝ → (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ)
37 resubcl 11560 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
3836, 37mpdan 685 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
3938rexrd 11300 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ*)
40 readdcl 11227 . . . . . . . . . . . . . . . . . 18 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ (abs‘((𝐹𝑐)‘𝑛)) ∈ ℝ) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
4136, 40mpdan 685 . . . . . . . . . . . . . . . . 17 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ)
4241rexrd 11300 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ*)
43 rexr 11296 . . . . . . . . . . . . . . . 16 (((𝐹𝑐)‘𝑛) ∈ ℝ → ((𝐹𝑐)‘𝑛) ∈ ℝ*)
44 elioo5 13419 . . . . . . . . . . . . . . . 16 (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ* ∧ (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ∈ ℝ* ∧ ((𝐹𝑐)‘𝑛) ∈ ℝ*) → (((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4539, 42, 43, 44syl3anc 1368 . . . . . . . . . . . . . . 15 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑐)‘𝑛) ∧ ((𝐹𝑐)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4635, 45sylibrd 258 . . . . . . . . . . . . . 14 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
4726, 46syl 17 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
48 fveq2 6900 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
4948fveq1d 6902 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑐 → ((𝐹𝑥)‘𝑛) = ((𝐹𝑐)‘𝑛))
50 eqid 2727 . . . . . . . . . . . . . . . 16 (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) = (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))
51 fvex 6913 . . . . . . . . . . . . . . . 16 ((𝐹𝑐)‘𝑛) ∈ V
5249, 50, 51fvmpt 7008 . . . . . . . . . . . . . . 15 (𝑐𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) = ((𝐹𝑐)‘𝑛))
5352eleq1d 2813 . . . . . . . . . . . . . 14 (𝑐𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
5453ad2antlr 725 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑐)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
5547, 54sylibrd 258 . . . . . . . . . . . 12 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
56 iooretop 24700 . . . . . . . . . . . . 13 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∈ (topGen‘ran (,))
57 resttopon 23083 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁))) ∧ 𝐼 ⊆ (ℝ ↑m (1...𝑁))) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
5811, 17, 57mp2an 690 . . . . . . . . . . . . . . . . . . 19 (𝑅t 𝐼) ∈ (TopOn‘𝐼)
5958a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑅t 𝐼) ∈ (TopOn‘𝐼))
6022feqmptd 6970 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
6160, 4eqeltrrd 2829 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn 𝑅))
6261adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ (𝐹𝑥)) ∈ ((𝑅t 𝐼) Cn 𝑅))
6311a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → 𝑅 ∈ (TopOn‘(ℝ ↑m (1...𝑁))))
64 retop 24696 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ Top
6564fconst6 6790 . . . . . . . . . . . . . . . . . . . . 21 ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top
6618, 3ptpjcn 23533 . . . . . . . . . . . . . . . . . . . . 21 (((1...𝑁) ∈ V ∧ ((1...𝑁) × {(topGen‘ran (,))}):(1...𝑁)⟶Top ∧ 𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
678, 65, 66mp3an12 1447 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)))
68 fvex 6913 . . . . . . . . . . . . . . . . . . . . . 22 (topGen‘ran (,)) ∈ V
6968fvconst2 7220 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ (1...𝑁) → (((1...𝑁) × {(topGen‘ran (,))})‘𝑛) = (topGen‘ran (,)))
7069oveq2d 7440 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ (1...𝑁) → (𝑅 Cn (((1...𝑁) × {(topGen‘ran (,))})‘𝑛)) = (𝑅 Cn (topGen‘ran (,))))
7167, 70eleqtrd 2830 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (1...𝑁) → (𝑧 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (topGen‘ran (,))))
7271adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑧 ∈ (ℝ ↑m (1...𝑁)) ↦ (𝑧𝑛)) ∈ (𝑅 Cn (topGen‘ran (,))))
73 fveq1 6899 . . . . . . . . . . . . . . . . . 18 (𝑧 = (𝐹𝑥) → (𝑧𝑛) = ((𝐹𝑥)‘𝑛))
7459, 62, 63, 72, 73cnmpt11 23585 . . . . . . . . . . . . . . . . 17 ((𝜑𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (topGen‘ran (,))))
7520cncnpi 23200 . . . . . . . . . . . . . . . . 17 (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ ((𝑅t 𝐼) Cn (topGen‘ran (,))) ∧ 𝑐𝐼) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
7674, 75sylan 578 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑐𝐼) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
7776an32s 650 . . . . . . . . . . . . . . 15 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐))
78 iscnp 23159 . . . . . . . . . . . . . . . . 17 (((𝑅t 𝐼) ∈ (TopOn‘𝐼) ∧ (topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝑐𝐼) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
7958, 9, 78mp3an12 1447 . . . . . . . . . . . . . . . 16 (𝑐𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
8079ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∈ (((𝑅t 𝐼) CnP (topGen‘ran (,)))‘𝑐) ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))))
8177, 80mpbid 231 . . . . . . . . . . . . . 14 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)):𝐼⟶ℝ ∧ ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧))))
8281simprd 494 . . . . . . . . . . . . 13 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)))
83 eleq2 2817 . . . . . . . . . . . . . . 15 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
84 sseq2 4006 . . . . . . . . . . . . . . . . 17 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧 ↔ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
8584anbi2d 628 . . . . . . . . . . . . . . . 16 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ (𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
8685rexbidv 3174 . . . . . . . . . . . . . . 15 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
8783, 86imbi12d 343 . . . . . . . . . . . . . 14 (𝑧 = ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) ↔ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))))
8887rspcv 3605 . . . . . . . . . . . . 13 (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∈ (topGen‘ran (,)) → (∀𝑧 ∈ (topGen‘ran (,))(((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ 𝑧 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ 𝑧)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))))
8956, 82, 88mpsyl 68 . . . . . . . . . . . 12 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑐) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
9055, 89syld 47 . . . . . . . . . . 11 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))))
91 0re 11252 . . . . . . . . . . . 12 0 ∈ ℝ
92 letric 11350 . . . . . . . . . . . 12 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))
9326, 91, 92sylancl 584 . . . . . . . . . . 11 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))
9490, 93jctird 525 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
95 r19.41v 3184 . . . . . . . . . . 11 (∃𝑣 ∈ (𝑅t 𝐼)((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))))
96 anass 467 . . . . . . . . . . . 12 (((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ (𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9796rexbii 3090 . . . . . . . . . . 11 (∃𝑣 ∈ (𝑅t 𝐼)((𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9895, 97bitr3i 276 . . . . . . . . . 10 ((∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) ↔ ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))))
9994, 98imbitrdi 250 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))))))
10058topontopi 22835 . . . . . . . . . . . . 13 (𝑅t 𝐼) ∈ Top
10120eltopss 22827 . . . . . . . . . . . . 13 (((𝑅t 𝐼) ∈ Top ∧ 𝑣 ∈ (𝑅t 𝐼)) → 𝑣𝐼)
102100, 101mpan 688 . . . . . . . . . . . 12 (𝑣 ∈ (𝑅t 𝐼) → 𝑣𝐼)
103 fvex 6913 . . . . . . . . . . . . . . . . . 18 ((𝐹𝑥)‘𝑛) ∈ V
104103, 50dmmpti 6702 . . . . . . . . . . . . . . . . 17 dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) = 𝐼
105104sseq2i 4009 . . . . . . . . . . . . . . . 16 (𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ↔ 𝑣𝐼)
106 funmpt 6594 . . . . . . . . . . . . . . . . 17 Fun (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))
107 funimass4 6966 . . . . . . . . . . . . . . . . 17 ((Fun (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) ∧ 𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
108106, 107mpan 688 . . . . . . . . . . . . . . . 16 (𝑣 ⊆ dom (𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
109105, 108sylbir 234 . . . . . . . . . . . . . . 15 (𝑣𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
110 ssel2 3975 . . . . . . . . . . . . . . . . 17 ((𝑣𝐼𝑧𝑣) → 𝑧𝐼)
111 fveq2 6900 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑧 → (𝐹𝑥) = (𝐹𝑧))
112111fveq1d 6902 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑧 → ((𝐹𝑥)‘𝑛) = ((𝐹𝑧)‘𝑛))
113 fvex 6913 . . . . . . . . . . . . . . . . . . . 20 ((𝐹𝑧)‘𝑛) ∈ V
114112, 50, 113fvmpt 7008 . . . . . . . . . . . . . . . . . . 19 (𝑧𝐼 → ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) = ((𝐹𝑧)‘𝑛))
115114eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑧𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ↔ ((𝐹𝑧)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
116 eliooord 13421 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑧)‘𝑛) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))))
117115, 116biimtrdi 252 . . . . . . . . . . . . . . . . 17 (𝑧𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
118110, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝑣𝐼𝑧𝑣) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
119118ralimdva 3163 . . . . . . . . . . . . . . 15 (𝑣𝐼 → (∀𝑧𝑣 ((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛))‘𝑧) ∈ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
120109, 119sylbid 239 . . . . . . . . . . . . . 14 (𝑣𝐼 → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
121120adantl 480 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))))
122 absnid 15283 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (abs‘((𝐹𝑐)‘𝑛)) = -((𝐹𝑐)‘𝑛))
123122oveq2d 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)))
12427negidd 11597 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)) = 0)
125124adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + -((𝐹𝑐)‘𝑛)) = 0)
126123, 125eqtrd 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
12726, 126sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
128127adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) = 0)
129128breq2d 5162 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ↔ ((𝐹𝑧)‘𝑛) < 0))
13022ffvelcdmda 7097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑧𝐼) → (𝐹𝑧) ∈ (ℝ ↑m (1...𝑁)))
131 elmapi 8872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐹𝑧) ∈ (ℝ ↑m (1...𝑁)) → (𝐹𝑧):(1...𝑁)⟶ℝ)
132130, 131syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑧𝐼) → (𝐹𝑧):(1...𝑁)⟶ℝ)
133132ffvelcdmda 7097 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐼) ∧ 𝑛 ∈ (1...𝑁)) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
134133an32s 650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → ((𝐹𝑧)‘𝑛) ∈ ℝ)
135 0red 11253 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → 0 ∈ ℝ)
136134, 135ltnled 11397 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
137136adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
138137adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < 0 ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
139129, 138bitrd 278 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
140139biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑧𝐼) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
141110, 140sylan2 591 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ (𝑣𝐼𝑧𝑣)) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
142141anassrs 466 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
143142adantld 489 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
144143ralimdva 3163 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) ∧ 𝑣𝐼) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
145144an32s 650 . . . . . . . . . . . . . . . 16 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ((𝐹𝑐)‘𝑛) ≤ 0) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
146145impancom 450 . . . . . . . . . . . . . . 15 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → (((𝐹𝑐)‘𝑛) ≤ 0 → ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
147 absid 15281 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (abs‘((𝐹𝑐)‘𝑛)) = ((𝐹𝑐)‘𝑛))
148147oveq2d 7440 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)))
14927subidd 11595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝐹𝑐)‘𝑛) ∈ ℝ → (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)) = 0)
150149adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − ((𝐹𝑐)‘𝑛)) = 0)
151148, 150eqtrd 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝐹𝑐)‘𝑛) ∈ ℝ ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
15226, 151sylan 578 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
153152adantr 479 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → (((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) = 0)
154153breq1d 5160 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ↔ 0 < ((𝐹𝑧)‘𝑛)))
155135, 134ltnled 11397 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
156155adantllr 717 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
157156adantlr 713 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → (0 < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
158154, 157bitrd 278 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
159158biimpd 228 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑧𝐼) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
160110, 159sylan2 591 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ (𝑣𝐼𝑧𝑣)) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
161160anassrs 466 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
162161adantrd 490 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) ∧ 𝑧𝑣) → (((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
163162ralimdva 3163 . . . . . . . . . . . . . . . . 17 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) ∧ 𝑣𝐼) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
164163an32s 650 . . . . . . . . . . . . . . . 16 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ 0 ≤ ((𝐹𝑐)‘𝑛)) → (∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
165164impancom 450 . . . . . . . . . . . . . . 15 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → (0 ≤ ((𝐹𝑐)‘𝑛) → ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
166146, 165orim12d 962 . . . . . . . . . . . . . 14 (((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) ∧ ∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛))))) → ((((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
167166expimpd 452 . . . . . . . . . . . . 13 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → ((∀𝑧𝑣 ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛))) < ((𝐹𝑧)‘𝑛) ∧ ((𝐹𝑧)‘𝑛) < (((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
168121, 167syland 601 . . . . . . . . . . . 12 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣𝐼) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
169102, 168sylan2 591 . . . . . . . . . . 11 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅t 𝐼)) → ((((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛))) → (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)))
170169anim2d 610 . . . . . . . . . 10 ((((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) ∧ 𝑣 ∈ (𝑅t 𝐼)) → ((𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))) → (𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
171170reximdva 3164 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (((𝑥𝐼 ↦ ((𝐹𝑥)‘𝑛)) “ 𝑣) ⊆ ((((𝐹𝑐)‘𝑛) − (abs‘((𝐹𝑐)‘𝑛)))(,)(((𝐹𝑐)‘𝑛) + (abs‘((𝐹𝑐)‘𝑛)))) ∧ (((𝐹𝑐)‘𝑛) ≤ 0 ∨ 0 ≤ ((𝐹𝑐)‘𝑛)))) → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
17299, 171syld 47 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))))
173 ralnex 3068 . . . . . . . . . . . . . 14 (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
174173rexbii 3090 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ }∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∃𝑟 ∈ { ≤ , ≤ } ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
175 letsr 18590 . . . . . . . . . . . . . . 15 ≤ ∈ TosetRel
176175elexi 3491 . . . . . . . . . . . . . 14 ≤ ∈ V
177176cnvex 7937 . . . . . . . . . . . . . 14 ≤ ∈ V
178 breq 5152 . . . . . . . . . . . . . . . 16 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ 0 ≤ ((𝐹𝑧)‘𝑛)))
179178notbid 317 . . . . . . . . . . . . . . 15 (𝑟 = ≤ → (¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
180179ralbidv 3173 . . . . . . . . . . . . . 14 (𝑟 = ≤ → (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛)))
181 breq 5152 . . . . . . . . . . . . . . . . 17 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ 0 ≤ ((𝐹𝑧)‘𝑛)))
182 c0ex 11244 . . . . . . . . . . . . . . . . . 18 0 ∈ V
183182, 113brcnv 5887 . . . . . . . . . . . . . . . . 17 (0 ≤ ((𝐹𝑧)‘𝑛) ↔ ((𝐹𝑧)‘𝑛) ≤ 0)
184181, 183bitrdi 286 . . . . . . . . . . . . . . . 16 (𝑟 = ≤ → (0𝑟((𝐹𝑧)‘𝑛) ↔ ((𝐹𝑧)‘𝑛) ≤ 0))
185184notbid 317 . . . . . . . . . . . . . . 15 (𝑟 = ≤ → (¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
186185ralbidv 3173 . . . . . . . . . . . . . 14 (𝑟 = ≤ → (∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
187176, 177, 180, 186rexpr 4708 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ }∀𝑧𝑣 ¬ 0𝑟((𝐹𝑧)‘𝑛) ↔ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0))
188 rexnal 3096 . . . . . . . . . . . . 13 (∃𝑟 ∈ { ≤ , ≤ } ¬ ∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛) ↔ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
189174, 187, 1883bitr3i 300 . . . . . . . . . . . 12 ((∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0) ↔ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))
190189anbi2i 621 . . . . . . . . . . 11 ((𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ (𝑐𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
191 annim 402 . . . . . . . . . . 11 ((𝑐𝑣 ∧ ¬ ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) ↔ ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
192190, 191bitri 274 . . . . . . . . . 10 ((𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
193192rexbii 3090 . . . . . . . . 9 (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ∃𝑣 ∈ (𝑅t 𝐼) ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
194 rexnal 3096 . . . . . . . . 9 (∃𝑣 ∈ (𝑅t 𝐼) ¬ (𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) ↔ ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
195193, 194bitri 274 . . . . . . . 8 (∃𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 ∧ (∀𝑧𝑣 ¬ 0 ≤ ((𝐹𝑧)‘𝑛) ∨ ∀𝑧𝑣 ¬ ((𝐹𝑧)‘𝑛) ≤ 0)) ↔ ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)))
196172, 195imbitrdi 250 . . . . . . 7 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (((𝐹𝑐)‘𝑛) ≠ 0 → ¬ ∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛))))
197196necon4ad 2955 . . . . . 6 (((𝜑𝑐𝐼) ∧ 𝑛 ∈ (1...𝑁)) → (∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ((𝐹𝑐)‘𝑛) = 0))
198197ralimdva 3163 . . . . 5 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0))
19925ffnd 6726 . . . . 5 ((𝜑𝑐𝐼) → (𝐹𝑐) Fn (1...𝑁))
200198, 199jctild 524 . . . 4 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0)))
201 fconstfv 7228 . . . . 5 ((𝐹𝑐):(1...𝑁)⟶{0} ↔ ((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0))
202182fconst2 7221 . . . . 5 ((𝐹𝑐):(1...𝑁)⟶{0} ↔ (𝐹𝑐) = ((1...𝑁) × {0}))
203201, 202bitr3i 276 . . . 4 (((𝐹𝑐) Fn (1...𝑁) ∧ ∀𝑛 ∈ (1...𝑁)((𝐹𝑐)‘𝑛) = 0) ↔ (𝐹𝑐) = ((1...𝑁) × {0}))
204200, 203imbitrdi 250 . . 3 ((𝜑𝑐𝐼) → (∀𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → (𝐹𝑐) = ((1...𝑁) × {0})))
205204reximdva 3164 . 2 (𝜑 → (∃𝑐𝐼𝑛 ∈ (1...𝑁)∀𝑣 ∈ (𝑅t 𝐼)(𝑐𝑣 → ∀𝑟 ∈ { ≤ , ≤ }∃𝑧𝑣 0𝑟((𝐹𝑧)‘𝑛)) → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0})))
2067, 205mpd 15 1 (𝜑 → ∃𝑐𝐼 (𝐹𝑐) = ((1...𝑁) × {0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2936  wral 3057  wrex 3066  Vcvv 3471  wss 3947  {csn 4630  {cpr 4632   cuni 4910   class class class wbr 5150  cmpt 5233   × cxp 5678  ccnv 5679  dom cdm 5680  ran crn 5681  cima 5683  Fun wfun 6545   Fn wfn 6546  wf 6547  cfv 6551  (class class class)co 7424  m cmap 8849  cc 11142  cr 11143  0cc0 11144  1c1 11145   + caddc 11147  *cxr 11283   < clt 11284  cle 11285  cmin 11480  -cneg 11481  cn 12248  +crp 13012  (,)cioo 13362  [,]cicc 13365  ...cfz 13522  abscabs 15219  t crest 17407  topGenctg 17424  tcpt 17425   TosetRel ctsr 18562  Topctop 22813  TopOnctopon 22830   Cn ccn 23146   CnP ccnp 23147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-inf2 9670  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221  ax-pre-sup 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-int 4952  df-iun 5000  df-iin 5001  df-disj 5116  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-se 5636  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-isom 6560  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7689  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-oadd 8495  df-omul 8496  df-er 8729  df-map 8851  df-pm 8852  df-ixp 8921  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9440  df-sup 9471  df-inf 9472  df-oi 9539  df-dju 9930  df-card 9968  df-acn 9971  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-div 11908  df-nn 12249  df-2 12311  df-3 12312  df-n0 12509  df-xnn0 12581  df-z 12595  df-uz 12859  df-q 12969  df-rp 13013  df-xneg 13130  df-xadd 13131  df-xmul 13132  df-ioo 13366  df-icc 13369  df-fz 13523  df-fzo 13666  df-fl 13795  df-seq 14005  df-exp 14065  df-fac 14271  df-bc 14300  df-hash 14328  df-cj 15084  df-re 15085  df-im 15086  df-sqrt 15220  df-abs 15221  df-clim 15470  df-sum 15671  df-dvds 16237  df-rest 17409  df-topgen 17430  df-pt 17431  df-ps 18563  df-tsr 18564  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-top 22814  df-topon 22831  df-bases 22867  df-cld 22941  df-ntr 22942  df-cls 22943  df-lp 23058  df-cn 23149  df-cnp 23150  df-t1 23236  df-haus 23237  df-cmp 23309  df-tx 23484  df-hmeo 23677  df-hmph 23678  df-ii 24815
This theorem is referenced by:  broucube  37132
  Copyright terms: Public domain W3C validator
OSZAR »