![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fconst2 | Structured version Visualization version GIF version |
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 20-Aug-1999.) |
Ref | Expression |
---|---|
fvconst2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
fconst2 | ⊢ (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvconst2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | fconst2g 7221 | . 2 ⊢ (𝐵 ∈ V → (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵}))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹:𝐴⟶{𝐵} ↔ 𝐹 = (𝐴 × {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∈ wcel 2098 Vcvv 3473 {csn 4632 × cxp 5680 ⟶wf 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 |
This theorem is referenced by: imadrhmcl 20692 rrxcph 25340 dvcmul 25895 plyeq0 26165 lnon0 30628 hsn0elch 31078 df0op2 31582 nmop0h 31821 xrge0mulc1cn 33575 matunitlindflem1 37122 poimirlem9 37135 poimir 37159 lfl1 38574 lkr0f 38598 lindsrng01 47614 |
Copyright terms: Public domain | W3C validator |