![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hsn0elch | Structured version Visualization version GIF version |
Description: The zero subspace belongs to the set of closed subspaces of Hilbert space. (Contributed by NM, 14-Oct-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hsn0elch | ⊢ {0ℎ} ∈ Cℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 30826 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
2 | snssi 4812 | . . . . 5 ⊢ (0ℎ ∈ ℋ → {0ℎ} ⊆ ℋ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ {0ℎ} ⊆ ℋ |
4 | 1 | elexi 3491 | . . . . 5 ⊢ 0ℎ ∈ V |
5 | 4 | snid 4665 | . . . 4 ⊢ 0ℎ ∈ {0ℎ} |
6 | 3, 5 | pm3.2i 470 | . . 3 ⊢ ({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) |
7 | velsn 4645 | . . . . . 6 ⊢ (𝑥 ∈ {0ℎ} ↔ 𝑥 = 0ℎ) | |
8 | velsn 4645 | . . . . . 6 ⊢ (𝑦 ∈ {0ℎ} ↔ 𝑦 = 0ℎ) | |
9 | oveq12 7429 | . . . . . . . 8 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = (0ℎ +ℎ 0ℎ)) | |
10 | 1 | hvaddlidi 30852 | . . . . . . . 8 ⊢ (0ℎ +ℎ 0ℎ) = 0ℎ |
11 | 9, 10 | eqtrdi 2784 | . . . . . . 7 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) = 0ℎ) |
12 | ovex 7453 | . . . . . . . 8 ⊢ (𝑥 +ℎ 𝑦) ∈ V | |
13 | 12 | elsn 4644 | . . . . . . 7 ⊢ ((𝑥 +ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 +ℎ 𝑦) = 0ℎ) |
14 | 11, 13 | sylibr 233 | . . . . . 6 ⊢ ((𝑥 = 0ℎ ∧ 𝑦 = 0ℎ) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
15 | 7, 8, 14 | syl2anb 597 | . . . . 5 ⊢ ((𝑥 ∈ {0ℎ} ∧ 𝑦 ∈ {0ℎ}) → (𝑥 +ℎ 𝑦) ∈ {0ℎ}) |
16 | 15 | rgen2 3194 | . . . 4 ⊢ ∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} |
17 | oveq2 7428 | . . . . . . . 8 ⊢ (𝑦 = 0ℎ → (𝑥 ·ℎ 𝑦) = (𝑥 ·ℎ 0ℎ)) | |
18 | hvmul0 30847 | . . . . . . . 8 ⊢ (𝑥 ∈ ℂ → (𝑥 ·ℎ 0ℎ) = 0ℎ) | |
19 | 17, 18 | sylan9eqr 2790 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) = 0ℎ) |
20 | ovex 7453 | . . . . . . . 8 ⊢ (𝑥 ·ℎ 𝑦) ∈ V | |
21 | 20 | elsn 4644 | . . . . . . 7 ⊢ ((𝑥 ·ℎ 𝑦) ∈ {0ℎ} ↔ (𝑥 ·ℎ 𝑦) = 0ℎ) |
22 | 19, 21 | sylibr 233 | . . . . . 6 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 = 0ℎ) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
23 | 8, 22 | sylan2b 593 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ {0ℎ}) → (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
24 | 23 | rgen2 3194 | . . . 4 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ} |
25 | 16, 24 | pm3.2i 470 | . . 3 ⊢ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}) |
26 | issh2 31032 | . . 3 ⊢ ({0ℎ} ∈ Sℋ ↔ (({0ℎ} ⊆ ℋ ∧ 0ℎ ∈ {0ℎ}) ∧ (∀𝑥 ∈ {0ℎ}∀𝑦 ∈ {0ℎ} (𝑥 +ℎ 𝑦) ∈ {0ℎ} ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ {0ℎ} (𝑥 ·ℎ 𝑦) ∈ {0ℎ}))) | |
27 | 6, 25, 26 | mpbir2an 710 | . 2 ⊢ {0ℎ} ∈ Sℋ |
28 | 4 | fconst2 7217 | . . . . . 6 ⊢ (𝑓:ℕ⟶{0ℎ} ↔ 𝑓 = (ℕ × {0ℎ})) |
29 | hlim0 31058 | . . . . . . 7 ⊢ (ℕ × {0ℎ}) ⇝𝑣 0ℎ | |
30 | breq1 5151 | . . . . . . 7 ⊢ (𝑓 = (ℕ × {0ℎ}) → (𝑓 ⇝𝑣 0ℎ ↔ (ℕ × {0ℎ}) ⇝𝑣 0ℎ)) | |
31 | 29, 30 | mpbiri 258 | . . . . . 6 ⊢ (𝑓 = (ℕ × {0ℎ}) → 𝑓 ⇝𝑣 0ℎ) |
32 | 28, 31 | sylbi 216 | . . . . 5 ⊢ (𝑓:ℕ⟶{0ℎ} → 𝑓 ⇝𝑣 0ℎ) |
33 | hlimuni 31061 | . . . . . 6 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ = 𝑥) | |
34 | 33 | eleq1d 2814 | . . . . 5 ⊢ ((𝑓 ⇝𝑣 0ℎ ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
35 | 32, 34 | sylan 579 | . . . 4 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → (0ℎ ∈ {0ℎ} ↔ 𝑥 ∈ {0ℎ})) |
36 | 5, 35 | mpbii 232 | . . 3 ⊢ ((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
37 | 36 | gen2 1791 | . 2 ⊢ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}) |
38 | isch2 31046 | . 2 ⊢ ({0ℎ} ∈ Cℋ ↔ ({0ℎ} ∈ Sℋ ∧ ∀𝑓∀𝑥((𝑓:ℕ⟶{0ℎ} ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ {0ℎ}))) | |
39 | 27, 37, 38 | mpbir2an 710 | 1 ⊢ {0ℎ} ∈ Cℋ |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ∀wral 3058 ⊆ wss 3947 {csn 4629 class class class wbr 5148 × cxp 5676 ⟶wf 6544 (class class class)co 7420 ℂcc 11137 ℕcn 12243 ℋchba 30742 +ℎ cva 30743 ·ℎ csm 30744 0ℎc0v 30747 ⇝𝑣 chli 30750 Sℋ csh 30751 Cℋ cch 30752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 ax-hilex 30822 ax-hfvadd 30823 ax-hvcom 30824 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvmulass 30830 ax-hvdistr1 30831 ax-hvdistr2 30832 ax-hvmul0 30833 ax-hfi 30902 ax-his1 30905 ax-his2 30906 ax-his3 30907 ax-his4 30908 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-pm 8848 df-en 8965 df-dom 8966 df-sdom 8967 df-sup 9466 df-inf 9467 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-n0 12504 df-z 12590 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-icc 13364 df-seq 14000 df-exp 14060 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-topgen 17425 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-top 22809 df-topon 22826 df-bases 22862 df-lm 23146 df-haus 23232 df-grpo 30316 df-gid 30317 df-ginv 30318 df-gdiv 30319 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-sm 30420 df-0v 30421 df-vs 30422 df-nmcv 30423 df-ims 30424 df-hnorm 30791 df-hvsub 30794 df-hlim 30795 df-sh 31030 df-ch 31044 |
This theorem is referenced by: h0elch 31078 h1de2ctlem 31378 |
Copyright terms: Public domain | W3C validator |