![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rgen2 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with two quantifiers. This theorem should be used in place of rgen2a 3364 since it depends on a smaller set of axioms. (Contributed by NM, 30-May-1999.) |
Ref | Expression |
---|---|
rgen2.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) |
Ref | Expression |
---|---|
rgen2 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen2.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜑) | |
2 | 1 | ralrimiva 3143 | . 2 ⊢ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜑) |
3 | 2 | rgen 3060 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3059 |
This theorem is referenced by: rgen3 3199 invdisjrabw 5133 invdisjrab 5134 sosn 5764 isoid 7337 f1owe 7361 epweon 7777 epweonALT 7778 f1stres 8017 f2ndres 8018 fnwelem 8136 soseq 8164 issmo 8368 oawordeulem 8574 naddf 8701 ecopover 8839 unfilem2 9335 dffi2 9446 inficl 9448 fipwuni 9449 fisn 9450 dffi3 9454 cantnfvalf 9688 r111 9798 alephf1 10108 alephiso 10121 dfac5lem4 10149 kmlem9 10181 ackbij1lem17 10259 fin1a2lem2 10424 fin1a2lem4 10426 axcc2lem 10459 smobeth 10609 nqereu 10952 addpqf 10967 mulpqf 10969 genpdm 11025 axaddf 11168 axmulf 11169 subf 11492 mulnzcnf 11890 negiso 12224 cnref1o 12999 xaddf 13235 xmulf 13283 ioof 13456 om2uzf1oi 13950 om2uzisoi 13951 wrd2ind 14705 wwlktovf1 14940 reeff1 16096 divalglem9 16377 bitsf1 16420 smupf 16452 gcdf 16486 eucalgf 16553 qredeu 16628 1arith 16895 vdwapf 16940 xpsff1o 17548 catideu 17654 sscres 17805 fpwipodrs 18531 letsr 18584 mgmidmo 18619 frmdplusg 18805 efmndmgm 18836 smndex1mgm 18858 pwmnd 18888 mulgfval 19024 nmznsg 19122 efgmf 19667 efglem 19670 efgred 19702 isabli 19750 brric 20442 xrsmgm 21333 xrs1cmn 21338 xrge0subm 21339 xrsds 21341 cnsubmlem 21346 cnsubrglem 21348 cnsubrglemOLD 21349 nn0srg 21369 rge0srg 21370 pzriprnglem5 21410 pzriprnglem8 21413 rzgrp 21554 fibas 22879 fctop 22906 cctop 22908 iccordt 23117 txuni2 23468 fsubbas 23770 zfbas 23799 ismeti 24230 dscmet 24480 qtopbaslem 24674 tgqioo 24715 xrsxmet 24724 xrsdsre 24725 retopconn 24744 iccconn 24745 divcnOLD 24783 divcn 24785 abscncf 24820 recncf 24821 imcncf 24822 cjcncf 24823 iimulcn 24860 iimulcnOLD 24861 icopnfhmeo 24867 iccpnfhmeo 24869 xrhmeo 24870 cnllycmp 24881 bndth 24883 iundisj2 25477 dyadf 25519 reefiso 26384 recosf1o 26468 cxpcn3 26682 sgmf 27076 2lgslem1b 27324 lrcut 27828 addsf 27898 negscut 27950 negsf1o 27965 mulscutlem 28030 tgjustf 28276 ercgrg 28320 2wspmdisj 30146 isabloi 30360 smcnlem 30506 cncph 30628 hvsubf 30824 hhip 30986 hhph 30987 helch 31052 hsn0elch 31057 hhssabloilem 31070 hhshsslem2 31077 shscli 31126 shintcli 31138 pjmf1 31525 idunop 31787 0cnop 31788 0cnfn 31789 idcnop 31790 idhmop 31791 0hmop 31792 adj0 31803 lnophsi 31810 lnopunii 31821 lnophmi 31827 nlelshi 31869 riesz4i 31872 cnlnadjlem6 31881 cnlnadjlem9 31884 adjcoi 31909 bra11 31917 pjhmopi 31955 iundisj2f 32379 iundisj2fi 32565 xrstos 32737 xrge0omnd 32791 zringfrac 32996 reofld 33056 xrge0slmod 33060 iistmd 33503 cnre2csqima 33512 mndpluscn 33527 raddcn 33530 xrge0iifiso 33536 xrge0iifmhm 33540 xrge0pluscn 33541 cnzh 33571 rezh 33572 br2base 33889 sxbrsiga 33910 signswmnd 34189 cardpred 34713 nummin 34714 indispconn 34844 cnllysconn 34855 ioosconn 34857 rellysconn 34861 fmlaomn0 35000 gonan0 35002 goaln0 35003 mpomulnzcnf 35783 fneref 35834 dnicn 35967 f1omptsnlem 36815 isbasisrelowl 36837 poimirlem27 37120 mblfinlem1 37130 mblfinlem2 37131 exidu1 37329 rngoideu 37376 isomliN 38711 idlaut 39569 resubf 41936 sn-subf 41983 mzpclall 42147 frmx 42334 frmy 42335 kelac2lem 42488 onsucf1o 42701 ontric3g 42952 clsk1indlem3 43473 icof 44592 natglobalincr 46263 sprsymrelf1 46836 fmtnof1 46875 prmdvdsfmtnof1 46927 uspgrsprf1 47209 plusfreseq 47226 nnsgrpmgm 47238 nnsgrp 47239 nn0mnd 47241 2zrngamgm 47307 2zrngmmgm 47314 2zrngnmrid 47318 ldepslinc 47577 rrx2xpref1o 47791 rrx2plordisom 47796 |
Copyright terms: Public domain | W3C validator |