![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mpomulnzcnf | Structured version Visualization version GIF version |
Description: Multiplication maps nonzero complex numbers to nonzero complex numbers. Version of mulnzcnf 11891 using maps-to notation, which does not require ax-mulf 11219. (Contributed by GG, 18-Apr-2025.) |
Ref | Expression |
---|---|
mpomulnzcnf | ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) | |
2 | ovex 7453 | . . 3 ⊢ (𝑥 · 𝑦) ∈ V | |
3 | 1, 2 | fnmpoi 8074 | . 2 ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) |
4 | oveq12 7429 | . . . . 5 ⊢ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → (𝑥 · 𝑦) = (𝑢 · 𝑣)) | |
5 | ovex 7453 | . . . . 5 ⊢ (𝑢 · 𝑣) ∈ V | |
6 | 4, 1, 5 | ovmpoa 7576 | . . . 4 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) = (𝑢 · 𝑣)) |
7 | eldifsn 4791 | . . . . . 6 ⊢ (𝑢 ∈ (ℂ ∖ {0}) ↔ (𝑢 ∈ ℂ ∧ 𝑢 ≠ 0)) | |
8 | eldifsn 4791 | . . . . . 6 ⊢ (𝑣 ∈ (ℂ ∖ {0}) ↔ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) | |
9 | mulcl 11223 | . . . . . . . 8 ⊢ ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ) | |
10 | 9 | ad2ant2r 746 | . . . . . . 7 ⊢ (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ∈ ℂ) |
11 | mulne0 11887 | . . . . . . 7 ⊢ (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → (𝑢 · 𝑣) ≠ 0) | |
12 | 10, 11 | jca 511 | . . . . . 6 ⊢ (((𝑢 ∈ ℂ ∧ 𝑢 ≠ 0) ∧ (𝑣 ∈ ℂ ∧ 𝑣 ≠ 0)) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0)) |
13 | 7, 8, 12 | syl2anb 597 | . . . . 5 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0)) |
14 | eldifsn 4791 | . . . . 5 ⊢ ((𝑢 · 𝑣) ∈ (ℂ ∖ {0}) ↔ ((𝑢 · 𝑣) ∈ ℂ ∧ (𝑢 · 𝑣) ≠ 0)) | |
15 | 13, 14 | sylibr 233 | . . . 4 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢 · 𝑣) ∈ (ℂ ∖ {0})) |
16 | 6, 15 | eqeltrd 2829 | . . 3 ⊢ ((𝑢 ∈ (ℂ ∖ {0}) ∧ 𝑣 ∈ (ℂ ∖ {0})) → (𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0})) |
17 | 16 | rgen2 3194 | . 2 ⊢ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}) |
18 | ffnov 7547 | . 2 ⊢ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) ↔ ((𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)) Fn ((ℂ ∖ {0}) × (ℂ ∖ {0})) ∧ ∀𝑢 ∈ (ℂ ∖ {0})∀𝑣 ∈ (ℂ ∖ {0})(𝑢(𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦))𝑣) ∈ (ℂ ∖ {0}))) | |
19 | 3, 17, 18 | mpbir2an 710 | 1 ⊢ (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑥 · 𝑦)):((ℂ ∖ {0}) × (ℂ ∖ {0}))⟶(ℂ ∖ {0}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∖ cdif 3944 {csn 4629 × cxp 5676 Fn wfn 6543 ⟶wf 6544 (class class class)co 7420 ∈ cmpo 7422 ℂcc 11137 0cc0 11139 · cmul 11144 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |