![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmpoi | Structured version Visualization version GIF version |
Description: Functionality and domain of a class given by the maps-to notation. (Contributed by FL, 17-May-2010.) |
Ref | Expression |
---|---|
fmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
fnmpoi.2 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
fnmpoi | ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnmpoi.2 | . . 3 ⊢ 𝐶 ∈ V | |
2 | 1 | rgen2w 3063 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V |
3 | fmpo.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
4 | 3 | fnmpo 8073 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ V → 𝐹 Fn (𝐴 × 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ 𝐹 Fn (𝐴 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ∀wral 3058 Vcvv 3471 × cxp 5676 Fn wfn 6543 ∈ cmpo 7422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-fv 6556 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 |
This theorem is referenced by: dmmpo 8075 fnoa 8529 fnom 8530 fnoe 8531 fnmap 8852 fnpm 8853 addpqnq 10962 mulpqnq 10965 mpoaddf 11233 mpomulf 11234 elq 12965 cnref1o 13000 ccatfn 14555 qnnen 16190 restfn 17406 prdsdsfn 17447 imasdsfn 17496 imasvscafn 17519 homffn 17673 comfffn 17684 comffn 17685 isoval 17748 cofucl 17874 fnfuc 17935 natffn 17939 catcisolem 18099 estrchomfn 18125 funcestrcsetclem4 18134 funcsetcestrclem4 18149 fnxpc 18167 1stfcl 18188 2ndfcl 18189 prfcl 18194 evlfcl 18214 curf1cl 18220 curfcl 18224 hofcl 18251 yonedalem3 18272 yonedainv 18273 plusffn 18609 mulgfval 19025 mulgfvalALT 19026 mulgfn 19028 gimfn 19215 sylow2blem2 19576 rnghmfn 20378 rhmfn 20438 rnghmsscmap2 20562 rnghmsscmap 20563 rhmsscmap2 20591 rhmsscmap 20592 srhmsubc 20613 rhmsubclem1 20618 fldc 20672 fldhmsubc 20673 scaffn 20766 lmimfn 20911 ipffn 21583 mplsubrglem 21946 tx1stc 23567 tx2ndc 23568 hmeofn 23674 efmndtmd 24018 qustgplem 24038 nmoffn 24641 rrxmfval 25347 mbfimaopnlem 25597 i1fadd 25637 i1fmul 25638 subsfn 27950 ex-fpar 30285 smatrcl 33397 txomap 33435 qtophaus 33437 pstmxmet 33498 dya2icoseg 33897 dya2iocrfn 33899 fncvm 34867 mpomulnzcnf 35783 cntotbnd 37269 grimfn 47163 rngchomffvalALTV 47340 rngchomrnghmresALTV 47341 rhmsubcALTVlem1 47343 funcringcsetcALTV2lem4 47355 funcringcsetclem4ALTV 47378 srhmsubcALTV 47387 fldcALTV 47394 fldhmsubcALTV 47395 rrx2xpref1o 47791 functhinclem1 48047 |
Copyright terms: Public domain | W3C validator |