![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcsetcestrclem4 | Structured version Visualization version GIF version |
Description: Lemma 4 for funcsetcestrc 18162. (Contributed by AV, 27-Mar-2020.) |
Ref | Expression |
---|---|
funcsetcestrc.s | ⊢ 𝑆 = (SetCat‘𝑈) |
funcsetcestrc.c | ⊢ 𝐶 = (Base‘𝑆) |
funcsetcestrc.f | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) |
funcsetcestrc.u | ⊢ (𝜑 → 𝑈 ∈ WUni) |
funcsetcestrc.o | ⊢ (𝜑 → ω ∈ 𝑈) |
funcsetcestrc.g | ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) |
Ref | Expression |
---|---|
funcsetcestrclem4 | ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . 3 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) | |
2 | ovex 7459 | . . . 4 ⊢ (𝑦 ↑m 𝑥) ∈ V | |
3 | resiexg 7926 | . . . 4 ⊢ ((𝑦 ↑m 𝑥) ∈ V → ( I ↾ (𝑦 ↑m 𝑥)) ∈ V) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ ( I ↾ (𝑦 ↑m 𝑥)) ∈ V |
5 | 1, 4 | fnmpoi 8080 | . 2 ⊢ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶) |
6 | funcsetcestrc.g | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) | |
7 | 6 | fneq1d 6652 | . 2 ⊢ (𝜑 → (𝐺 Fn (𝐶 × 𝐶) ↔ (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥))) Fn (𝐶 × 𝐶))) |
8 | 5, 7 | mpbiri 257 | 1 ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3473 {csn 4632 〈cop 4638 ↦ cmpt 5235 I cid 5579 × cxp 5680 ↾ cres 5684 Fn wfn 6548 ‘cfv 6553 (class class class)co 7426 ∈ cmpo 7428 ωcom 7876 ↑m cmap 8851 WUnicwun 10731 ndxcnx 17169 Basecbs 17187 SetCatcsetc 18071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-1st 7999 df-2nd 8000 |
This theorem is referenced by: funcsetcestrc 18162 |
Copyright terms: Public domain | W3C validator |