MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unfilem2 Structured version   Visualization version   GIF version

Theorem unfilem2 9335
Description: Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
unfilem1.1 𝐴 ∈ ω
unfilem1.2 𝐵 ∈ ω
unfilem1.3 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
Assertion
Ref Expression
unfilem2 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem unfilem2
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 7453 . . . . . 6 (𝐴 +o 𝑥) ∈ V
2 unfilem1.3 . . . . . 6 𝐹 = (𝑥𝐵 ↦ (𝐴 +o 𝑥))
31, 2fnmpti 6698 . . . . 5 𝐹 Fn 𝐵
4 unfilem1.1 . . . . . 6 𝐴 ∈ ω
5 unfilem1.2 . . . . . 6 𝐵 ∈ ω
64, 5, 2unfilem1 9334 . . . . 5 ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)
7 df-fo 6554 . . . . 5 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹 Fn 𝐵 ∧ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴)))
83, 6, 7mpbir2an 710 . . . 4 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)
9 fof 6811 . . . 4 (𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴) → 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴))
108, 9ax-mp 5 . . 3 𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴)
11 oveq2 7428 . . . . . . . 8 (𝑥 = 𝑧 → (𝐴 +o 𝑥) = (𝐴 +o 𝑧))
12 ovex 7453 . . . . . . . 8 (𝐴 +o 𝑧) ∈ V
1311, 2, 12fvmpt 7005 . . . . . . 7 (𝑧𝐵 → (𝐹𝑧) = (𝐴 +o 𝑧))
14 oveq2 7428 . . . . . . . 8 (𝑥 = 𝑤 → (𝐴 +o 𝑥) = (𝐴 +o 𝑤))
15 ovex 7453 . . . . . . . 8 (𝐴 +o 𝑤) ∈ V
1614, 2, 15fvmpt 7005 . . . . . . 7 (𝑤𝐵 → (𝐹𝑤) = (𝐴 +o 𝑤))
1713, 16eqeqan12d 2742 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ (𝐴 +o 𝑧) = (𝐴 +o 𝑤)))
18 elnn 7881 . . . . . . . 8 ((𝑧𝐵𝐵 ∈ ω) → 𝑧 ∈ ω)
195, 18mpan2 690 . . . . . . 7 (𝑧𝐵𝑧 ∈ ω)
20 elnn 7881 . . . . . . . 8 ((𝑤𝐵𝐵 ∈ ω) → 𝑤 ∈ ω)
215, 20mpan2 690 . . . . . . 7 (𝑤𝐵𝑤 ∈ ω)
22 nnacan 8648 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑧 ∈ ω ∧ 𝑤 ∈ ω) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
234, 19, 21, 22mp3an3an 1464 . . . . . 6 ((𝑧𝐵𝑤𝐵) → ((𝐴 +o 𝑧) = (𝐴 +o 𝑤) ↔ 𝑧 = 𝑤))
2417, 23bitrd 279 . . . . 5 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) ↔ 𝑧 = 𝑤))
2524biimpd 228 . . . 4 ((𝑧𝐵𝑤𝐵) → ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤))
2625rgen2 3194 . . 3 𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)
27 dff13 7265 . . 3 (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵⟶((𝐴 +o 𝐵) ∖ 𝐴) ∧ ∀𝑧𝐵𝑤𝐵 ((𝐹𝑧) = (𝐹𝑤) → 𝑧 = 𝑤)))
2810, 26, 27mpbir2an 710 . 2 𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴)
29 df-f1o 6555 . 2 (𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) ↔ (𝐹:𝐵1-1→((𝐴 +o 𝐵) ∖ 𝐴) ∧ 𝐹:𝐵onto→((𝐴 +o 𝐵) ∖ 𝐴)))
3028, 8, 29mpbir2an 710 1 𝐹:𝐵1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3058  cdif 3944  cmpt 5231  ran crn 5679   Fn wfn 6543  wf 6544  1-1wf1 6545  ontowfo 6546  1-1-ontowf1o 6547  cfv 6548  (class class class)co 7420  ωcom 7870   +o coa 8483
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-oadd 8490
This theorem is referenced by:  unfilem3  9336
  Copyright terms: Public domain W3C validator
OSZAR »