![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fof | Structured version Visualization version GIF version |
Description: An onto mapping is a mapping. (Contributed by NM, 3-Aug-1994.) |
Ref | Expression |
---|---|
fof | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 4036 | . . 3 ⊢ (ran 𝐹 = 𝐵 → ran 𝐹 ⊆ 𝐵) | |
2 | 1 | anim2i 616 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) → (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) |
3 | df-fo 6548 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
4 | df-f 6546 | . 2 ⊢ (𝐹:𝐴⟶𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3imtr4i 292 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ⊆ wss 3945 ran crn 5673 Fn wfn 6537 ⟶wf 6538 –onto→wfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-in 3952 df-ss 3962 df-f 6546 df-fo 6548 |
This theorem is referenced by: fofun 6806 fofn 6807 dffo2 6809 foima 6810 focnvimacdmdm 6817 focofo 6818 resdif 6854 fimacnvinrn 7075 fompt 7122 fconst5 7212 cocan2 7295 foeqcnvco 7303 soisoi 7330 ffoss 7943 focdmex 7953 opco1 8122 opco2 8123 tposf2 8249 smoiso2 8383 mapfoss 8864 ssdomg 9014 fopwdom 9098 unfilem2 9329 fodomfib 9344 fofinf1o 9345 brwdomn0 9586 fowdom 9588 wdomtr 9592 wdomima2g 9603 fodomfi2 10077 wdomfil 10078 alephiso 10115 iunfictbso 10131 cofsmo 10286 isf32lem10 10379 fin1a2lem7 10423 fodomb 10543 iunfo 10556 tskuni 10800 gruima 10819 gruen 10829 axpre-sup 11186 wrdsymb 14518 supcvg 15828 ruclem13 16212 imasval 17486 imasle 17498 imasaddfnlem 17503 imasaddflem 17505 imasvscafn 17512 imasvscaf 17514 imasless 17515 homadm 18022 homacd 18023 dmaf 18031 cdaf 18032 setcepi 18070 imasmnd2 18724 sursubmefmnd 18841 imasgrp2 19004 mhmid 19012 mhmmnd 19013 mhmfmhm 19014 ghmgrp 19015 efgred2 19701 ghmfghm 19778 ghmcyg 19844 gsumval3 19855 gsumzoppg 19892 gsum2dlem2 19919 imasring 20259 znunit 21490 znrrg 21492 cygznlem2a 21494 cygznlem3 21496 cncmp 23289 cnconn 23319 1stcfb 23342 dfac14 23515 qtopval2 23593 qtopuni 23599 qtopid 23602 qtopcld 23610 qtopcn 23611 qtopeu 23613 qtophmeo 23714 elfm3 23847 ovoliunnul 25429 uniiccdif 25500 dchrzrhcl 27171 lgsdchrval 27280 rpvmasumlem 27413 dchrmusum2 27420 dchrvmasumlem3 27425 dchrisum0ff 27433 dchrisum0flblem1 27434 rpvmasum2 27438 dchrisum0re 27439 dchrisum0lem2a 27443 nodense 27618 bdaydm 27700 bdayelon 27702 om2noseqlt 28165 om2noseqlt2 28166 om2noseqf1o 28167 noseqrdgfn 28172 grpocl 30303 grporndm 30313 vafval 30406 smfval 30408 nvgf 30421 vsfval 30436 hhssabloilem 31064 pjhf 31511 elunop 31675 unopf1o 31719 cnvunop 31721 pjinvari 31994 foresf1o 32293 rabfodom 32294 iunrdx 32347 xppreima 32425 gsumpart 32763 imasmhm 33060 imasghm 33061 imasrhm 33062 qtophaus 33431 sigapildsys 33775 carsgclctunlem3 33934 mtyf 35156 poimirlem26 37113 poimirlem27 37114 volsupnfl 37132 cocanfo 37186 exidreslem 37344 rngosn3 37391 rngodm1dm2 37399 founiiun 44546 founiiun0 44557 issalnnd 45727 sge0fodjrnlem 45798 ismeannd 45849 caragenunicl 45906 fcores 46443 fcoresf1lem 46444 fcoresf1 46445 fcoresfo 46447 fargshiftfo 46776 |
Copyright terms: Public domain | W3C validator |