![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nffo | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nffo.1 | ⊢ Ⅎ𝑥𝐹 |
nffo.2 | ⊢ Ⅎ𝑥𝐴 |
nffo.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nffo | ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fo 6557 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵)) | |
2 | nffo.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nffo.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | 2, 3 | nffn 6656 | . . 3 ⊢ Ⅎ𝑥 𝐹 Fn 𝐴 |
5 | 2 | nfrn 5956 | . . . 4 ⊢ Ⅎ𝑥ran 𝐹 |
6 | nffo.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
7 | 5, 6 | nfeq 2912 | . . 3 ⊢ Ⅎ𝑥ran 𝐹 = 𝐵 |
8 | 4, 7 | nfan 1894 | . 2 ⊢ Ⅎ𝑥(𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵) |
9 | 1, 8 | nfxfr 1847 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–onto→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1533 Ⅎwnf 1777 Ⅎwnfc 2878 ran crn 5681 Fn wfn 6546 –onto→wfo 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-fun 6553 df-fn 6554 df-fo 6557 |
This theorem is referenced by: nff1o 6840 fompt 7131 |
Copyright terms: Public domain | W3C validator |