MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiccdif Structured version   Visualization version   GIF version

Theorem uniiccdif 25500
Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.)
Hypothesis
Ref Expression
uniioombl.1 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
Assertion
Ref Expression
uniiccdif (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))

Proof of Theorem uniiccdif
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssun1 4168 . . 3 ran ((,) ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
2 uniioombl.1 . . . . . . . 8 (𝜑𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)))
3 ovolfcl 25388 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
42, 3sylan 579 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))))
5 rexr 11284 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ∈ ℝ → (1st ‘(𝐹𝑥)) ∈ ℝ*)
6 rexr 11284 . . . . . . . 8 ((2nd ‘(𝐹𝑥)) ∈ ℝ → (2nd ‘(𝐹𝑥)) ∈ ℝ*)
7 id 22 . . . . . . . 8 ((1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)) → (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥)))
8 prunioo 13484 . . . . . . . 8 (((1st ‘(𝐹𝑥)) ∈ ℝ* ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ* ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
95, 6, 7, 8syl3an 1158 . . . . . . 7 (((1st ‘(𝐹𝑥)) ∈ ℝ ∧ (2nd ‘(𝐹𝑥)) ∈ ℝ ∧ (1st ‘(𝐹𝑥)) ≤ (2nd ‘(𝐹𝑥))) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
104, 9syl 17 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
11 fvco3 6991 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
122, 11sylan 579 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((,)‘(𝐹𝑥)))
132ffvelcdmda 7088 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ ( ≤ ∩ (ℝ × ℝ)))
1413elin2d 4195 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) ∈ (ℝ × ℝ))
15 1st2nd2 8026 . . . . . . . . . . 11 ((𝐹𝑥) ∈ (ℝ × ℝ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1614, 15syl 17 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℕ) → (𝐹𝑥) = ⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1716fveq2d 6895 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
18 df-ov 7417 . . . . . . . . 9 ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) = ((,)‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
1917, 18eqtr4di 2786 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ((,)‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
2012, 19eqtrd 2768 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (((,) ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))))
21 df-pr 4627 . . . . . . . 8 {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})
22 fvco3 6991 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
232, 22sylan 579 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((1st𝐹)‘𝑥) = (1st ‘(𝐹𝑥)))
24 fvco3 6991 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
252, 24sylan 579 . . . . . . . . 9 ((𝜑𝑥 ∈ ℕ) → ((2nd𝐹)‘𝑥) = (2nd ‘(𝐹𝑥)))
2623, 25preq12d 4741 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → {((1st𝐹)‘𝑥), ((2nd𝐹)‘𝑥)} = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2721, 26eqtr3id 2782 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))})
2820, 27uneq12d 4160 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = (((1st ‘(𝐹𝑥))(,)(2nd ‘(𝐹𝑥))) ∪ {(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))}))
29 fvco3 6991 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
302, 29sylan 579 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ([,]‘(𝐹𝑥)))
3116fveq2d 6895 . . . . . . . 8 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩))
32 df-ov 7417 . . . . . . . 8 ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))) = ([,]‘⟨(1st ‘(𝐹𝑥)), (2nd ‘(𝐹𝑥))⟩)
3331, 32eqtr4di 2786 . . . . . . 7 ((𝜑𝑥 ∈ ℕ) → ([,]‘(𝐹𝑥)) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3430, 33eqtrd 2768 . . . . . 6 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((1st ‘(𝐹𝑥))[,](2nd ‘(𝐹𝑥))))
3510, 28, 343eqtr4rd 2779 . . . . 5 ((𝜑𝑥 ∈ ℕ) → (([,] ∘ 𝐹)‘𝑥) = ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
3635iuneq2dv 5015 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})))
37 iccf 13451 . . . . . . 7 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
38 ffn 6716 . . . . . . 7 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → [,] Fn (ℝ* × ℝ*))
3937, 38ax-mp 5 . . . . . 6 [,] Fn (ℝ* × ℝ*)
40 inss2 4225 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
41 rexpssxrxp 11283 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
4240, 41sstri 3987 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
43 fss 6733 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)) → 𝐹:ℕ⟶(ℝ* × ℝ*))
442, 42, 43sylancl 585 . . . . . 6 (𝜑𝐹:ℕ⟶(ℝ* × ℝ*))
45 fnfco 6756 . . . . . 6 (([,] Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ([,] ∘ 𝐹) Fn ℕ)
4639, 44, 45sylancr 586 . . . . 5 (𝜑 → ([,] ∘ 𝐹) Fn ℕ)
47 fniunfv 7251 . . . . 5 (([,] ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
4846, 47syl 17 . . . 4 (𝜑 𝑥 ∈ ℕ (([,] ∘ 𝐹)‘𝑥) = ran ([,] ∘ 𝐹))
49 iunun 5090 . . . . 5 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}))
50 ioof 13450 . . . . . . . . 9 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
51 ffn 6716 . . . . . . . . 9 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
5250, 51ax-mp 5 . . . . . . . 8 (,) Fn (ℝ* × ℝ*)
53 fnfco 6756 . . . . . . . 8 (((,) Fn (ℝ* × ℝ*) ∧ 𝐹:ℕ⟶(ℝ* × ℝ*)) → ((,) ∘ 𝐹) Fn ℕ)
5452, 44, 53sylancr 586 . . . . . . 7 (𝜑 → ((,) ∘ 𝐹) Fn ℕ)
55 fniunfv 7251 . . . . . . 7 (((,) ∘ 𝐹) Fn ℕ → 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
5654, 55syl 17 . . . . . 6 (𝜑 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) = ran ((,) ∘ 𝐹))
57 iunun 5090 . . . . . . 7 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
58 fo1st 8007 . . . . . . . . . . . . . 14 1st :V–onto→V
59 fofn 6807 . . . . . . . . . . . . . 14 (1st :V–onto→V → 1st Fn V)
6058, 59ax-mp 5 . . . . . . . . . . . . 13 1st Fn V
61 ssv 4002 . . . . . . . . . . . . . 14 ( ≤ ∩ (ℝ × ℝ)) ⊆ V
62 fss 6733 . . . . . . . . . . . . . 14 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ ( ≤ ∩ (ℝ × ℝ)) ⊆ V) → 𝐹:ℕ⟶V)
632, 61, 62sylancl 585 . . . . . . . . . . . . 13 (𝜑𝐹:ℕ⟶V)
64 fnfco 6756 . . . . . . . . . . . . 13 ((1st Fn V ∧ 𝐹:ℕ⟶V) → (1st𝐹) Fn ℕ)
6560, 63, 64sylancr 586 . . . . . . . . . . . 12 (𝜑 → (1st𝐹) Fn ℕ)
66 fnfun 6648 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → Fun (1st𝐹))
6765, 66syl 17 . . . . . . . . . . 11 (𝜑 → Fun (1st𝐹))
68 fndm 6651 . . . . . . . . . . . 12 ((1st𝐹) Fn ℕ → dom (1st𝐹) = ℕ)
69 eqimss2 4037 . . . . . . . . . . . 12 (dom (1st𝐹) = ℕ → ℕ ⊆ dom (1st𝐹))
7065, 68, 693syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (1st𝐹))
71 dfimafn2 6956 . . . . . . . . . . 11 ((Fun (1st𝐹) ∧ ℕ ⊆ dom (1st𝐹)) → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
7267, 70, 71syl2anc 583 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)})
73 fnima 6679 . . . . . . . . . . 11 ((1st𝐹) Fn ℕ → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7465, 73syl 17 . . . . . . . . . 10 (𝜑 → ((1st𝐹) “ ℕ) = ran (1st𝐹))
7572, 74eqtr3d 2770 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = ran (1st𝐹))
76 rnco2 6251 . . . . . . . . 9 ran (1st𝐹) = (1st “ ran 𝐹)
7775, 76eqtrdi 2784 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} = (1st “ ran 𝐹))
78 fo2nd 8008 . . . . . . . . . . . . . 14 2nd :V–onto→V
79 fofn 6807 . . . . . . . . . . . . . 14 (2nd :V–onto→V → 2nd Fn V)
8078, 79ax-mp 5 . . . . . . . . . . . . 13 2nd Fn V
81 fnfco 6756 . . . . . . . . . . . . 13 ((2nd Fn V ∧ 𝐹:ℕ⟶V) → (2nd𝐹) Fn ℕ)
8280, 63, 81sylancr 586 . . . . . . . . . . . 12 (𝜑 → (2nd𝐹) Fn ℕ)
83 fnfun 6648 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → Fun (2nd𝐹))
8482, 83syl 17 . . . . . . . . . . 11 (𝜑 → Fun (2nd𝐹))
85 fndm 6651 . . . . . . . . . . . 12 ((2nd𝐹) Fn ℕ → dom (2nd𝐹) = ℕ)
86 eqimss2 4037 . . . . . . . . . . . 12 (dom (2nd𝐹) = ℕ → ℕ ⊆ dom (2nd𝐹))
8782, 85, 863syl 18 . . . . . . . . . . 11 (𝜑 → ℕ ⊆ dom (2nd𝐹))
88 dfimafn2 6956 . . . . . . . . . . 11 ((Fun (2nd𝐹) ∧ ℕ ⊆ dom (2nd𝐹)) → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
8984, 87, 88syl2anc 583 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)})
90 fnima 6679 . . . . . . . . . . 11 ((2nd𝐹) Fn ℕ → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9182, 90syl 17 . . . . . . . . . 10 (𝜑 → ((2nd𝐹) “ ℕ) = ran (2nd𝐹))
9289, 91eqtr3d 2770 . . . . . . . . 9 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = ran (2nd𝐹))
93 rnco2 6251 . . . . . . . . 9 ran (2nd𝐹) = (2nd “ ran 𝐹)
9492, 93eqtrdi 2784 . . . . . . . 8 (𝜑 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)} = (2nd “ ran 𝐹))
9577, 94uneq12d 4160 . . . . . . 7 (𝜑 → ( 𝑥 ∈ ℕ {((1st𝐹)‘𝑥)} ∪ 𝑥 ∈ ℕ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9657, 95eqtrid 2780 . . . . . 6 (𝜑 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)}) = ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
9756, 96uneq12d 4160 . . . . 5 (𝜑 → ( 𝑥 ∈ ℕ (((,) ∘ 𝐹)‘𝑥) ∪ 𝑥 ∈ ℕ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9849, 97eqtrid 2780 . . . 4 (𝜑 𝑥 ∈ ℕ ((((,) ∘ 𝐹)‘𝑥) ∪ ({((1st𝐹)‘𝑥)} ∪ {((2nd𝐹)‘𝑥)})) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
9936, 48, 983eqtr3d 2776 . . 3 (𝜑 ran ([,] ∘ 𝐹) = ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
1001, 99sseqtrrid 4031 . 2 (𝜑 ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹))
101 ovolficcss 25391 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
1022, 101syl 17 . . . 4 (𝜑 ran ([,] ∘ 𝐹) ⊆ ℝ)
103102ssdifssd 4138 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ)
104 omelon 9663 . . . . . . . . . . 11 ω ∈ On
105 nnenom 13971 . . . . . . . . . . . 12 ℕ ≈ ω
106105ensymi 9018 . . . . . . . . . . 11 ω ≈ ℕ
107 isnumi 9963 . . . . . . . . . . 11 ((ω ∈ On ∧ ω ≈ ℕ) → ℕ ∈ dom card)
108104, 106, 107mp2an 691 . . . . . . . . . 10 ℕ ∈ dom card
109 fofun 6806 . . . . . . . . . . . . 13 (1st :V–onto→V → Fun 1st )
11058, 109ax-mp 5 . . . . . . . . . . . 12 Fun 1st
111 ssv 4002 . . . . . . . . . . . . 13 ran 𝐹 ⊆ V
112 fof 6805 . . . . . . . . . . . . . . 15 (1st :V–onto→V → 1st :V⟶V)
11358, 112ax-mp 5 . . . . . . . . . . . . . 14 1st :V⟶V
114113fdmi 6728 . . . . . . . . . . . . 13 dom 1st = V
115111, 114sseqtrri 4015 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 1st
116 fores 6815 . . . . . . . . . . . 12 ((Fun 1st ∧ ran 𝐹 ⊆ dom 1st ) → (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹))
117110, 115, 116mp2an 691 . . . . . . . . . . 11 (1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹)
1182ffnd 6717 . . . . . . . . . . . 12 (𝜑𝐹 Fn ℕ)
119 dffn4 6811 . . . . . . . . . . . 12 (𝐹 Fn ℕ ↔ 𝐹:ℕ–onto→ran 𝐹)
120118, 119sylib 217 . . . . . . . . . . 11 (𝜑𝐹:ℕ–onto→ran 𝐹)
121 foco 6819 . . . . . . . . . . 11 (((1st ↾ ran 𝐹):ran 𝐹onto→(1st “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
122117, 120, 121sylancr 586 . . . . . . . . . 10 (𝜑 → ((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹))
123 fodomnum 10074 . . . . . . . . . 10 (ℕ ∈ dom card → (((1st ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(1st “ ran 𝐹) → (1st “ ran 𝐹) ≼ ℕ))
124108, 122, 123mpsyl 68 . . . . . . . . 9 (𝜑 → (1st “ ran 𝐹) ≼ ℕ)
125 domentr 9027 . . . . . . . . 9 (((1st “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (1st “ ran 𝐹) ≼ ω)
126124, 105, 125sylancl 585 . . . . . . . 8 (𝜑 → (1st “ ran 𝐹) ≼ ω)
127 fofun 6806 . . . . . . . . . . . . 13 (2nd :V–onto→V → Fun 2nd )
12878, 127ax-mp 5 . . . . . . . . . . . 12 Fun 2nd
129 fof 6805 . . . . . . . . . . . . . . 15 (2nd :V–onto→V → 2nd :V⟶V)
13078, 129ax-mp 5 . . . . . . . . . . . . . 14 2nd :V⟶V
131130fdmi 6728 . . . . . . . . . . . . 13 dom 2nd = V
132111, 131sseqtrri 4015 . . . . . . . . . . . 12 ran 𝐹 ⊆ dom 2nd
133 fores 6815 . . . . . . . . . . . 12 ((Fun 2nd ∧ ran 𝐹 ⊆ dom 2nd ) → (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹))
134128, 132, 133mp2an 691 . . . . . . . . . . 11 (2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹)
135 foco 6819 . . . . . . . . . . 11 (((2nd ↾ ran 𝐹):ran 𝐹onto→(2nd “ ran 𝐹) ∧ 𝐹:ℕ–onto→ran 𝐹) → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
136134, 120, 135sylancr 586 . . . . . . . . . 10 (𝜑 → ((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹))
137 fodomnum 10074 . . . . . . . . . 10 (ℕ ∈ dom card → (((2nd ↾ ran 𝐹) ∘ 𝐹):ℕ–onto→(2nd “ ran 𝐹) → (2nd “ ran 𝐹) ≼ ℕ))
138108, 136, 137mpsyl 68 . . . . . . . . 9 (𝜑 → (2nd “ ran 𝐹) ≼ ℕ)
139 domentr 9027 . . . . . . . . 9 (((2nd “ ran 𝐹) ≼ ℕ ∧ ℕ ≈ ω) → (2nd “ ran 𝐹) ≼ ω)
140138, 105, 139sylancl 585 . . . . . . . 8 (𝜑 → (2nd “ ran 𝐹) ≼ ω)
141 unctb 10222 . . . . . . . 8 (((1st “ ran 𝐹) ≼ ω ∧ (2nd “ ran 𝐹) ≼ ω) → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
142126, 140, 141syl2anc 583 . . . . . . 7 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω)
143 ctex 8977 . . . . . . 7 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
144142, 143syl 17 . . . . . 6 (𝜑 → ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V)
145 ssid 4000 . . . . . . . 8 ran ([,] ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹)
146145, 99sseqtrid 4030 . . . . . . 7 (𝜑 ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
147 ssundif 4483 . . . . . . 7 ( ran ([,] ∘ 𝐹) ⊆ ( ran ((,) ∘ 𝐹) ∪ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))) ↔ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
148146, 147sylib 217 . . . . . 6 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
149 ssdomg 9014 . . . . . 6 (((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∈ V → (( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹))))
150144, 148, 149sylc 65 . . . . 5 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)))
151 domtr 9021 . . . . 5 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ∧ ((1st “ ran 𝐹) ∪ (2nd “ ran 𝐹)) ≼ ω) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
152150, 142, 151syl2anc 583 . . . 4 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω)
153 domentr 9027 . . . 4 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ω ∧ ω ≈ ℕ) → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
154152, 106, 153sylancl 585 . . 3 (𝜑 → ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ)
155 ovolctb2 25414 . . 3 ((( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ⊆ ℝ ∧ ( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹)) ≼ ℕ) → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
156103, 154, 155syl2anc 583 . 2 (𝜑 → (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0)
157100, 156jca 511 1 (𝜑 → ( ran ((,) ∘ 𝐹) ⊆ ran ([,] ∘ 𝐹) ∧ (vol*‘( ran ([,] ∘ 𝐹) ∖ ran ((,) ∘ 𝐹))) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  Vcvv 3470  cdif 3942  cun 3943  cin 3944  wss 3945  𝒫 cpw 4598  {csn 4624  {cpr 4626  cop 4630   cuni 4903   ciun 4991   class class class wbr 5142   × cxp 5670  dom cdm 5672  ran crn 5673  cres 5674  cima 5675  ccom 5676  Oncon0 6363  Fun wfun 6536   Fn wfn 6537  wf 6538  ontowfo 6540  cfv 6542  (class class class)co 7414  ωcom 7864  1st c1st 7985  2nd c2nd 7986  cen 8954  cdom 8955  cardccrd 9952  cr 11131  0cc0 11132  *cxr 11271  cle 11273  cn 12236  (,)cioo 13350  [,]cicc 13353  vol*covol 25384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-map 8840  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-oi 9527  df-dju 9918  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-xadd 13119  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-sum 15659  df-xmet 21265  df-met 21266  df-ovol 25386
This theorem is referenced by:  uniioombllem3  25507  uniioombllem4  25508  uniioombllem5  25509  uniiccmbl  25512
  Copyright terms: Public domain W3C validator
OSZAR »