![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > elunop | Structured version Visualization version GIF version |
Description: Property defining a unitary Hilbert space operator. (Contributed by NM, 18-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elunop | ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3482 | . 2 ⊢ (𝑇 ∈ UniOp → 𝑇 ∈ V) | |
2 | fof 6815 | . . . 4 ⊢ (𝑇: ℋ–onto→ ℋ → 𝑇: ℋ⟶ ℋ) | |
3 | ax-hilex 30932 | . . . 4 ⊢ ℋ ∈ V | |
4 | fex 7243 | . . . 4 ⊢ ((𝑇: ℋ⟶ ℋ ∧ ℋ ∈ V) → 𝑇 ∈ V) | |
5 | 2, 3, 4 | sylancl 584 | . . 3 ⊢ (𝑇: ℋ–onto→ ℋ → 𝑇 ∈ V) |
6 | 5 | adantr 479 | . 2 ⊢ ((𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)) → 𝑇 ∈ V) |
7 | foeq1 6811 | . . . 4 ⊢ (𝑡 = 𝑇 → (𝑡: ℋ–onto→ ℋ ↔ 𝑇: ℋ–onto→ ℋ)) | |
8 | fveq1 6900 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑥) = (𝑇‘𝑥)) | |
9 | fveq1 6900 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑡‘𝑦) = (𝑇‘𝑦)) | |
10 | 8, 9 | oveq12d 7442 | . . . . . 6 ⊢ (𝑡 = 𝑇 → ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = ((𝑇‘𝑥) ·ih (𝑇‘𝑦))) |
11 | 10 | eqeq1d 2728 | . . . . 5 ⊢ (𝑡 = 𝑇 → (((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
12 | 11 | 2ralbidv 3209 | . . . 4 ⊢ (𝑡 = 𝑇 → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
13 | 7, 12 | anbi12d 630 | . . 3 ⊢ (𝑡 = 𝑇 → ((𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦)) ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)))) |
14 | df-unop 31776 | . . 3 ⊢ UniOp = {𝑡 ∣ (𝑡: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑡‘𝑥) ·ih (𝑡‘𝑦)) = (𝑥 ·ih 𝑦))} | |
15 | 13, 14 | elab2g 3668 | . 2 ⊢ (𝑇 ∈ V → (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦)))) |
16 | 1, 6, 15 | pm5.21nii 377 | 1 ⊢ (𝑇 ∈ UniOp ↔ (𝑇: ℋ–onto→ ℋ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℋ ((𝑇‘𝑥) ·ih (𝑇‘𝑦)) = (𝑥 ·ih 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 ⟶wf 6550 –onto→wfo 6552 ‘cfv 6554 (class class class)co 7424 ℋchba 30852 ·ih csp 30855 UniOpcuo 30882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-hilex 30932 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-ov 7427 df-unop 31776 |
This theorem is referenced by: unop 31848 unopf1o 31849 cnvunop 31851 counop 31854 idunop 31911 lnopunii 31945 elunop2 31946 |
Copyright terms: Public domain | W3C validator |