![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlaut | Structured version Visualization version GIF version |
Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
idlaut.b | ⊢ 𝐵 = (Base‘𝐾) |
idlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
idlaut | ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6882 | . . 3 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵):𝐵–1-1-onto→𝐵) |
3 | fvresi 7188 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
4 | fvresi 7188 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
5 | 3, 4 | breqan12d 5168 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦)) |
6 | 5 | bicomd 222 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
7 | 6 | rgen2 3195 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)) |
8 | 7 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
9 | idlaut.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
10 | eqid 2728 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | idlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
12 | 9, 10, 11 | islaut 39588 | . 2 ⊢ (𝐾 ∈ 𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))))) |
13 | 2, 8, 12 | mpbir2and 711 | 1 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3058 class class class wbr 5152 I cid 5579 ↾ cres 5684 –1-1-onto→wf1o 6552 ‘cfv 6553 Basecbs 17187 lecple 17247 LAutclaut 39490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-oprab 7430 df-mpo 7431 df-map 8853 df-laut 39494 |
This theorem is referenced by: idldil 39619 |
Copyright terms: Public domain | W3C validator |