![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 5877 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2099 Vcvv 3470 class class class wbr 5143 ◡ccnv 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-cnv 5681 |
This theorem is referenced by: cnvco 5883 dfrn2 5886 dfdm4 5893 cnvsym 6113 cnvsymOLD 6114 cnvsymOLDOLD 6115 intasym 6116 asymref 6117 qfto 6122 dminss 6152 imainss 6153 dminxp 6179 cnvcnv3 6187 cnvpo 6286 cnvso 6287 dffun2 6553 dffun2OLD 6554 dffun2OLDOLD 6555 funcnvsn 6598 funcnv2 6616 fun2cnv 6619 imadif 6632 f1ompt 7116 foeqcnvco 7304 f1eqcocnv 7305 f1eqcocnvOLD 7306 fliftcnv 7314 isocnv2 7334 fsplit 8117 ercnv 8740 ecid 8795 omxpenlem 9092 sbthcl 9114 fimax2g 9308 dfsup2 9462 eqinf 9502 infval 9504 infcllem 9505 wofib 9563 oemapso 9700 cflim2 10281 fin23lem40 10369 isfin1-3 10404 fin12 10431 negiso 12219 dfinfre 12220 infrenegsup 12222 xrinfmss2 13317 trclublem 14969 imasleval 17517 invsym2 17740 oppcsect2 17756 odupos 18314 oduposb 18315 odulub 18393 oduglb 18395 posglbdg 18401 gsumcom3 19927 ordtbas2 23089 ordtcnv 23099 ordtrest2 23102 utop2nei 24149 utop3cls 24150 dvlt0 25932 dvcnvrelem1 25944 nomaxmo 27625 ofpreima 32445 funcnvmpt 32447 oduprs 32686 odutos 32690 tosglblem 32696 mgccnv 32721 ordtcnvNEW 33516 ordtrest2NEW 33519 xrge0iifiso 33531 erdszelem9 34804 coepr 35342 dffr5 35343 dfso2 35344 cnvco1 35348 cnvco2 35349 pocnv 35352 txpss3v 35469 brtxp 35471 brpprod3b 35478 idsset 35481 fixcnv 35499 brimage 35517 brcup 35530 brcap 35531 dfrecs2 35541 dfrdg4 35542 dfint3 35543 imagesset 35544 brlb 35546 fvline 35735 ellines 35743 trer 35795 poimirlem31 37119 poimir 37121 frinfm 37203 xrnss3v 37839 rencldnfilem 42231 cnvssco 43027 psshepw 43209 dffrege115 43399 frege131 43415 frege133 43417 gte-lteh 48148 gt-lth 48149 |
Copyright terms: Public domain | W3C validator |