![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > odupos | Structured version Visualization version GIF version |
Description: Being a poset is a self-dual property. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
Ref | Expression |
---|---|
odupos.d | ⊢ 𝐷 = (ODual‘𝑂) |
Ref | Expression |
---|---|
odupos | ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odupos.d | . . . 4 ⊢ 𝐷 = (ODual‘𝑂) | |
2 | 1 | fvexi 6906 | . . 3 ⊢ 𝐷 ∈ V |
3 | 2 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ V) |
4 | eqid 2728 | . . . 4 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
5 | 1, 4 | odubas 18277 | . . 3 ⊢ (Base‘𝑂) = (Base‘𝐷) |
6 | 5 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → (Base‘𝑂) = (Base‘𝐷)) |
7 | eqid 2728 | . . . 4 ⊢ (le‘𝑂) = (le‘𝑂) | |
8 | 1, 7 | oduleval 18275 | . . 3 ⊢ ◡(le‘𝑂) = (le‘𝐷) |
9 | 8 | a1i 11 | . 2 ⊢ (𝑂 ∈ Poset → ◡(le‘𝑂) = (le‘𝐷)) |
10 | 4, 7 | posref 18304 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎(le‘𝑂)𝑎) |
11 | vex 3474 | . . . 4 ⊢ 𝑎 ∈ V | |
12 | 11, 11 | brcnv 5880 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑎) |
13 | 10, 12 | sylibr 233 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂)) → 𝑎◡(le‘𝑂)𝑎) |
14 | vex 3474 | . . . . 5 ⊢ 𝑏 ∈ V | |
15 | 11, 14 | brcnv 5880 | . . . 4 ⊢ (𝑎◡(le‘𝑂)𝑏 ↔ 𝑏(le‘𝑂)𝑎) |
16 | 14, 11 | brcnv 5880 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑎 ↔ 𝑎(le‘𝑂)𝑏) |
17 | 15, 16 | anbi12ci 628 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) ↔ (𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
18 | 4, 7 | posasymb 18305 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) ↔ 𝑎 = 𝑏)) |
19 | 18 | biimpd 228 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
20 | 17, 19 | biimtrid 241 | . 2 ⊢ ((𝑂 ∈ Poset ∧ 𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂)) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑎) → 𝑎 = 𝑏)) |
21 | 3anrev 1099 | . . . 4 ⊢ ((𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂)) ↔ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) | |
22 | 4, 7 | postr 18306 | . . . 4 ⊢ ((𝑂 ∈ Poset ∧ (𝑐 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑎 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
23 | 21, 22 | sylan2b 593 | . . 3 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎) → 𝑐(le‘𝑂)𝑎)) |
24 | vex 3474 | . . . . 5 ⊢ 𝑐 ∈ V | |
25 | 14, 24 | brcnv 5880 | . . . 4 ⊢ (𝑏◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑏) |
26 | 15, 25 | anbi12ci 628 | . . 3 ⊢ ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) ↔ (𝑐(le‘𝑂)𝑏 ∧ 𝑏(le‘𝑂)𝑎)) |
27 | 11, 24 | brcnv 5880 | . . 3 ⊢ (𝑎◡(le‘𝑂)𝑐 ↔ 𝑐(le‘𝑂)𝑎) |
28 | 23, 26, 27 | 3imtr4g 296 | . 2 ⊢ ((𝑂 ∈ Poset ∧ (𝑎 ∈ (Base‘𝑂) ∧ 𝑏 ∈ (Base‘𝑂) ∧ 𝑐 ∈ (Base‘𝑂))) → ((𝑎◡(le‘𝑂)𝑏 ∧ 𝑏◡(le‘𝑂)𝑐) → 𝑎◡(le‘𝑂)𝑐)) |
29 | 3, 6, 9, 13, 20, 28 | isposd 18309 | 1 ⊢ (𝑂 ∈ Poset → 𝐷 ∈ Poset) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 Vcvv 3470 class class class wbr 5143 ◡ccnv 5672 ‘cfv 6543 Basecbs 17174 lecple 17234 ODualcodu 18272 Posetcpo 18293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-4 12302 df-5 12303 df-6 12304 df-7 12305 df-8 12306 df-9 12307 df-dec 12703 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ple 17247 df-odu 18273 df-proset 18281 df-poset 18299 |
This theorem is referenced by: oduposb 18315 posglbdg 18401 odutos 32690 glbprlem 47975 |
Copyright terms: Public domain | W3C validator |