![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funcnv2 | Structured version Visualization version GIF version |
Description: A simpler equivalence for single-rooted (see funcnv 6617). (Contributed by NM, 9-Aug-2004.) |
Ref | Expression |
---|---|
funcnv2 | ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6103 | . . 3 ⊢ Rel ◡𝐴 | |
2 | dffun6 6556 | . . 3 ⊢ (Fun ◡𝐴 ↔ (Rel ◡𝐴 ∧ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥)) | |
3 | 1, 2 | mpbiran 708 | . 2 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑦◡𝐴𝑥) |
4 | vex 3474 | . . . . 5 ⊢ 𝑦 ∈ V | |
5 | vex 3474 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 4, 5 | brcnv 5880 | . . . 4 ⊢ (𝑦◡𝐴𝑥 ↔ 𝑥𝐴𝑦) |
7 | 6 | mobii 2538 | . . 3 ⊢ (∃*𝑥 𝑦◡𝐴𝑥 ↔ ∃*𝑥 𝑥𝐴𝑦) |
8 | 7 | albii 1814 | . 2 ⊢ (∀𝑦∃*𝑥 𝑦◡𝐴𝑥 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
9 | 3, 8 | bitri 275 | 1 ⊢ (Fun ◡𝐴 ↔ ∀𝑦∃*𝑥 𝑥𝐴𝑦) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∀wal 1532 ∃*wmo 2528 class class class wbr 5143 ◡ccnv 5672 Rel wrel 5678 Fun wfun 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2530 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-fun 6545 |
This theorem is referenced by: funcnv 6617 fun2cnv 6619 fun11 6622 dff12 6787 1stconst 8100 2ndconst 8101 |
Copyright terms: Public domain | W3C validator |