![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > jctird | Structured version Visualization version GIF version |
Description: Deduction conjoining a theorem to right of consequent in an implication. (Contributed by NM, 21-Apr-2005.) |
Ref | Expression |
---|---|
jctird.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
jctird.2 | ⊢ (𝜑 → 𝜃) |
Ref | Expression |
---|---|
jctird | ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | jctird.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | jctird.2 | . . 3 ⊢ (𝜑 → 𝜃) | |
3 | 2 | a1d 25 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 1, 3 | jcad 512 | 1 ⊢ (𝜑 → (𝜓 → (𝜒 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: anc2ri 556 pm5.31 830 fnun 6662 fcof 6740 fcoOLD 6742 mapdom2 9166 fisupg 9309 fiint 9342 dffi3 9448 fiinfg 9516 dfac2b 10147 nnadju 10214 cflm 10267 cfslbn 10284 cardmin 10581 fpwwe2lem11 10658 fpwwe2lem12 10659 elfznelfzob 13764 modsumfzodifsn 13935 dvdsdivcl 16286 isprm5 16671 latjlej1 18438 latmlem1 18454 cnrest2 23183 cnpresti 23185 trufil 23807 stdbdxmet 24417 lgsdir 27258 elwwlks2 29770 orthin 31249 mdbr2 32099 dmdbr2 32106 mdsl2i 32125 atcvat4i 32200 mdsymlem3 32208 wzel 35414 ontgval 35909 poimirlem3 37090 poimirlem4 37091 poimirlem29 37116 poimir 37120 cmtbr4N 38721 cvrat4 38910 cdlemblem 39260 negexpidd 42096 3cubeslem1 42098 tfsconcatb0 42767 ensucne0OLD 42954 gricer 47184 itschlc0xyqsol 47834 elpglem2 48137 |
Copyright terms: Public domain | W3C validator |