HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  atcvat4i Structured version   Visualization version   GIF version

Theorem atcvat4i 32200
Description: A condition implying existence of an atom with the properties shown. Lemma 3.2.20 of [PtakPulmannova] p. 68. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
atcvat3.1 𝐴C
Assertion
Ref Expression
atcvat4i ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem atcvat4i
StepHypRef Expression
1 atcvat3.1 . . . . . . . . 9 𝐴C
21hatomici 32162 . . . . . . . 8 (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms 𝑥𝐴)
3 atelch 32147 . . . . . . . . . . . . . . 15 (𝐶 ∈ HAtoms → 𝐶C )
4 atelch 32147 . . . . . . . . . . . . . . 15 (𝑥 ∈ HAtoms → 𝑥C )
5 chub1 31310 . . . . . . . . . . . . . . 15 ((𝐶C𝑥C ) → 𝐶 ⊆ (𝐶 𝑥))
63, 4, 5syl2an 595 . . . . . . . . . . . . . 14 ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐶 ⊆ (𝐶 𝑥))
7 sseq1 4003 . . . . . . . . . . . . . 14 (𝐵 = 𝐶 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐶 ⊆ (𝐶 𝑥)))
86, 7imbitrrid 245 . . . . . . . . . . . . 13 (𝐵 = 𝐶 → ((𝐶 ∈ HAtoms ∧ 𝑥 ∈ HAtoms) → 𝐵 ⊆ (𝐶 𝑥)))
98expd 415 . . . . . . . . . . . 12 (𝐵 = 𝐶 → (𝐶 ∈ HAtoms → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥))))
109impcom 407 . . . . . . . . . . 11 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → 𝐵 ⊆ (𝐶 𝑥)))
1110anim2d 611 . . . . . . . . . 10 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → ((𝑥𝐴𝑥 ∈ HAtoms) → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1211expcomd 416 . . . . . . . . 9 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝑥 ∈ HAtoms → (𝑥𝐴 → (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1312reximdvai 3161 . . . . . . . 8 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (∃𝑥 ∈ HAtoms 𝑥𝐴 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
142, 13syl5 34 . . . . . . 7 ((𝐶 ∈ HAtoms ∧ 𝐵 = 𝐶) → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
1514ex 412 . . . . . 6 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1615a1i 11 . . . . 5 (𝐵 ⊆ (𝐴 𝐶) → (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1716com4l 92 . . . 4 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → (𝐴 ≠ 0 → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))))
1817imp4a 422 . . 3 (𝐶 ∈ HAtoms → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
1918adantl 481 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 = 𝐶 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
20 atelch 32147 . . . . . . . 8 (𝐵 ∈ HAtoms → 𝐵C )
21 chlejb2 31316 . . . . . . . . . . . . . . 15 ((𝐶C𝐴C ) → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
221, 21mpan2 690 . . . . . . . . . . . . . 14 (𝐶C → (𝐶𝐴 ↔ (𝐴 𝐶) = 𝐴))
2322biimpa 476 . . . . . . . . . . . . 13 ((𝐶C𝐶𝐴) → (𝐴 𝐶) = 𝐴)
2423sseq2d 4010 . . . . . . . . . . . 12 ((𝐶C𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) ↔ 𝐵𝐴))
2524biimpa 476 . . . . . . . . . . 11 (((𝐶C𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴)
2625expl 457 . . . . . . . . . 10 (𝐶C → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
2726adantl 481 . . . . . . . . 9 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → 𝐵𝐴))
28 chub2 31311 . . . . . . . . 9 ((𝐵C𝐶C ) → 𝐵 ⊆ (𝐶 𝐵))
2927, 28jctird 526 . . . . . . . 8 ((𝐵C𝐶C ) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3020, 3, 29syl2an 595 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
31 simpl 482 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → 𝐵 ∈ HAtoms)
3230, 31jctild 525 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶𝐴𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵)))))
3332impl 455 . . . . 5 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
34 sseq1 4003 . . . . . . 7 (𝑥 = 𝐵 → (𝑥𝐴𝐵𝐴))
35 oveq2 7422 . . . . . . . 8 (𝑥 = 𝐵 → (𝐶 𝑥) = (𝐶 𝐵))
3635sseq2d 4010 . . . . . . 7 (𝑥 = 𝐵 → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 𝐵)))
3734, 36anbi12d 631 . . . . . 6 (𝑥 = 𝐵 → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))))
3837rspcev 3608 . . . . 5 ((𝐵 ∈ HAtoms ∧ (𝐵𝐴𝐵 ⊆ (𝐶 𝐵))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
3933, 38syl 17 . . . 4 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4039adantrl 715 . . 3 ((((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ 𝐶𝐴) ∧ (𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
4140exp31 419 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶𝐴 → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
42 simpr 484 . . 3 ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → 𝐵 ⊆ (𝐴 𝐶))
43 ioran 982 . . . 4 (¬ (𝐵 = 𝐶𝐶𝐴) ↔ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴))
441atcvat3i 32199 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms))
453ad2antlr 726 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐶C )
4644imp 406 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms)
47 simpll 766 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ∈ HAtoms)
4845, 46, 473jca 1126 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms))
49 inss2 4225 . . . . . . . . . . . . 13 (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐵 𝐶)
50 chjcom 31309 . . . . . . . . . . . . . 14 ((𝐵C𝐶C ) → (𝐵 𝐶) = (𝐶 𝐵))
5120, 3, 50syl2an 595 . . . . . . . . . . . . 13 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐵 𝐶) = (𝐶 𝐵))
5249, 51sseqtrid 4030 . . . . . . . . . . . 12 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
5352adantr 480 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵))
54 atnssm0 32179 . . . . . . . . . . . . . . . . 17 ((𝐴C𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
551, 54mpan 689 . . . . . . . . . . . . . . . 16 (𝐶 ∈ HAtoms → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
5655adantl 481 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 ↔ (𝐴𝐶) = 0))
57 inss1 4224 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴
58 sslin 4230 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴))
5957, 58ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐶𝐴)
60 incom 4197 . . . . . . . . . . . . . . . . . 18 (𝐶𝐴) = (𝐴𝐶)
6159, 60sseqtri 4014 . . . . . . . . . . . . . . . . 17 (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶)
62 sseq2 4004 . . . . . . . . . . . . . . . . 17 ((𝐴𝐶) = 0 → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ (𝐴𝐶) ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0))
6361, 62mpbii 232 . . . . . . . . . . . . . . . 16 ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0)
64 simpr 484 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → 𝐶C )
65 chjcl 31160 . . . . . . . . . . . . . . . . . . . 20 ((𝐵C𝐶C ) → (𝐵 𝐶) ∈ C )
66 chincl 31302 . . . . . . . . . . . . . . . . . . . 20 ((𝐴C ∧ (𝐵 𝐶) ∈ C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
671, 65, 66sylancr 586 . . . . . . . . . . . . . . . . . . 19 ((𝐵C𝐶C ) → (𝐴 ∩ (𝐵 𝐶)) ∈ C )
68 chincl 31302 . . . . . . . . . . . . . . . . . . 19 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
6964, 67, 68syl2anc 583 . . . . . . . . . . . . . . . . . 18 ((𝐵C𝐶C ) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
7020, 3, 69syl2an 595 . . . . . . . . . . . . . . . . 17 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C )
71 chle0 31246 . . . . . . . . . . . . . . . . 17 ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ∈ C → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) ⊆ 0 ↔ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7363, 72imbitrid 243 . . . . . . . . . . . . . . 15 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴𝐶) = 0 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7456, 73sylbid 239 . . . . . . . . . . . . . 14 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ 𝐶𝐴 → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
7574imp 406 . . . . . . . . . . . . 13 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ¬ 𝐶𝐴) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7675adantrl 715 . . . . . . . . . . . 12 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ (¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴)) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7776adantrr 716 . . . . . . . . . . 11 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0)
7853, 77jca 511 . . . . . . . . . 10 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0))
79 atexch 32184 . . . . . . . . . 10 ((𝐶C ∧ (𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ 𝐵 ∈ HAtoms) → (((𝐴 ∩ (𝐵 𝐶)) ⊆ (𝐶 𝐵) ∧ (𝐶 ∩ (𝐴 ∩ (𝐵 𝐶))) = 0) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8048, 78, 79sylc 65 . . . . . . . . 9 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8180, 57jctil 519 . . . . . . . 8 (((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) ∧ ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶))) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8281ex 412 . . . . . . 7 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8344, 82jcad 512 . . . . . 6 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))))
84 sseq1 4003 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝑥𝐴 ↔ (𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴))
85 oveq2 7422 . . . . . . . . 9 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐶 𝑥) = (𝐶 (𝐴 ∩ (𝐵 𝐶))))
8685sseq2d 4010 . . . . . . . 8 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → (𝐵 ⊆ (𝐶 𝑥) ↔ 𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶)))))
8784, 86anbi12d 631 . . . . . . 7 (𝑥 = (𝐴 ∩ (𝐵 𝐶)) → ((𝑥𝐴𝐵 ⊆ (𝐶 𝑥)) ↔ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))))
8887rspcev 3608 . . . . . 6 (((𝐴 ∩ (𝐵 𝐶)) ∈ HAtoms ∧ ((𝐴 ∩ (𝐵 𝐶)) ⊆ 𝐴𝐵 ⊆ (𝐶 (𝐴 ∩ (𝐵 𝐶))))) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))
8983, 88syl6 35 . . . . 5 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) ∧ 𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
9089expd 415 . . . 4 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((¬ 𝐵 = 𝐶 ∧ ¬ 𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9143, 90biimtrid 241 . . 3 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → (𝐵 ⊆ (𝐴 𝐶) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9242, 91syl7 74 . 2 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → (¬ (𝐵 = 𝐶𝐶𝐴) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥)))))
9319, 41, 92ecase3d 1032 1 ((𝐵 ∈ HAtoms ∧ 𝐶 ∈ HAtoms) → ((𝐴 ≠ 0𝐵 ⊆ (𝐴 𝐶)) → ∃𝑥 ∈ HAtoms (𝑥𝐴𝐵 ⊆ (𝐶 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 846  w3a 1085   = wceq 1534  wcel 2099  wne 2936  wrex 3066  cin 3944  wss 3945  (class class class)co 7414   C cch 30732   chj 30736  0c0h 30738  HAtomscat 30768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212  ax-hilex 30802  ax-hfvadd 30803  ax-hvcom 30804  ax-hvass 30805  ax-hv0cl 30806  ax-hvaddid 30807  ax-hfvmul 30808  ax-hvmulid 30809  ax-hvmulass 30810  ax-hvdistr1 30811  ax-hvdistr2 30812  ax-hvmul0 30813  ax-hfi 30882  ax-his1 30885  ax-his2 30886  ax-his3 30887  ax-his4 30888  ax-hcompl 31005
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-rlim 15459  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-cn 23124  df-cnp 23125  df-lm 23126  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cfil 25176  df-cau 25177  df-cmet 25178  df-grpo 30296  df-gid 30297  df-ginv 30298  df-gdiv 30299  df-ablo 30348  df-vc 30362  df-nv 30395  df-va 30398  df-ba 30399  df-sm 30400  df-0v 30401  df-vs 30402  df-nmcv 30403  df-ims 30404  df-dip 30504  df-ssp 30525  df-ph 30616  df-cbn 30666  df-hnorm 30771  df-hba 30772  df-hvsub 30774  df-hlim 30775  df-hcau 30776  df-sh 31010  df-ch 31024  df-oc 31055  df-ch0 31056  df-shs 31111  df-span 31112  df-chj 31113  df-chsup 31114  df-pjh 31198  df-cv 32082  df-at 32141
This theorem is referenced by:  mdsymlem3  32208
  Copyright terms: Public domain W3C validator
OSZAR »