HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdbr2 Structured version   Visualization version   GIF version

Theorem mdbr2 32099
Description: Binary relation expressing the modular pair property. This version has a weaker constraint than mdbr 32097. (Contributed by NM, 15-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
mdbr2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem mdbr2
StepHypRef Expression
1 mdbr 32097 . 2 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)))))
2 chub1 31310 . . . . . . . . . 10 ((𝑥C𝐴C ) → 𝑥 ⊆ (𝑥 𝐴))
32ancoms 458 . . . . . . . . 9 ((𝐴C𝑥C ) → 𝑥 ⊆ (𝑥 𝐴))
4 iba 527 . . . . . . . . . 10 (𝑥𝐵 → (𝑥 ⊆ (𝑥 𝐴) ↔ (𝑥 ⊆ (𝑥 𝐴) ∧ 𝑥𝐵)))
5 ssin 4226 . . . . . . . . . 10 ((𝑥 ⊆ (𝑥 𝐴) ∧ 𝑥𝐵) ↔ 𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵))
64, 5bitrdi 287 . . . . . . . . 9 (𝑥𝐵 → (𝑥 ⊆ (𝑥 𝐴) ↔ 𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵)))
73, 6syl5ibcom 244 . . . . . . . 8 ((𝐴C𝑥C ) → (𝑥𝐵𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵)))
8 chub2 31311 . . . . . . . . 9 ((𝐴C𝑥C ) → 𝐴 ⊆ (𝑥 𝐴))
98ssrind 4231 . . . . . . . 8 ((𝐴C𝑥C ) → (𝐴𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))
107, 9jctird 526 . . . . . . 7 ((𝐴C𝑥C ) → (𝑥𝐵 → (𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵) ∧ (𝐴𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))))
1110adantlr 714 . . . . . 6 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝑥𝐵 → (𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵) ∧ (𝐴𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵))))
12 simpr 484 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → 𝑥C )
13 chincl 31302 . . . . . . . 8 ((𝐴C𝐵C ) → (𝐴𝐵) ∈ C )
1413adantr 480 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐴𝐵) ∈ C )
15 chjcl 31160 . . . . . . . . . 10 ((𝑥C𝐴C ) → (𝑥 𝐴) ∈ C )
1615ancoms 458 . . . . . . . . 9 ((𝐴C𝑥C ) → (𝑥 𝐴) ∈ C )
17 chincl 31302 . . . . . . . . 9 (((𝑥 𝐴) ∈ C𝐵C ) → ((𝑥 𝐴) ∩ 𝐵) ∈ C )
1816, 17sylan 579 . . . . . . . 8 (((𝐴C𝑥C ) ∧ 𝐵C ) → ((𝑥 𝐴) ∩ 𝐵) ∈ C )
1918an32s 651 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝑥 𝐴) ∩ 𝐵) ∈ C )
20 chlub 31312 . . . . . . 7 ((𝑥C ∧ (𝐴𝐵) ∈ C ∧ ((𝑥 𝐴) ∩ 𝐵) ∈ C ) → ((𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵) ∧ (𝐴𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵)) ↔ (𝑥 (𝐴𝐵)) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
2112, 14, 19, 20syl3anc 1369 . . . . . 6 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝑥 ⊆ ((𝑥 𝐴) ∩ 𝐵) ∧ (𝐴𝐵) ⊆ ((𝑥 𝐴) ∩ 𝐵)) ↔ (𝑥 (𝐴𝐵)) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
2211, 21sylibd 238 . . . . 5 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝑥𝐵 → (𝑥 (𝐴𝐵)) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
23 eqss 3993 . . . . . 6 (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ (((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)) ∧ (𝑥 (𝐴𝐵)) ⊆ ((𝑥 𝐴) ∩ 𝐵)))
2423rbaib 538 . . . . 5 ((𝑥 (𝐴𝐵)) ⊆ ((𝑥 𝐴) ∩ 𝐵) → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵))))
2522, 24syl6 35 . . . 4 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝑥𝐵 → (((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵)) ↔ ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
2625pm5.74d 273 . . 3 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
2726ralbidva 3171 . 2 ((𝐴C𝐵C ) → (∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) = (𝑥 (𝐴𝐵))) ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
281, 27bitrd 279 1 ((𝐴C𝐵C ) → (𝐴 𝑀 𝐵 ↔ ∀𝑥C (𝑥𝐵 → ((𝑥 𝐴) ∩ 𝐵) ⊆ (𝑥 (𝐴𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099  wral 3057  cin 3944  wss 3945   class class class wbr 5142  (class class class)co 7414   C cch 30732   chj 30736   𝑀 cmd 30769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-inf2 9658  ax-cc 10452  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210  ax-addf 11211  ax-mulf 11212  ax-hilex 30802  ax-hfvadd 30803  ax-hvcom 30804  ax-hvass 30805  ax-hv0cl 30806  ax-hvaddid 30807  ax-hfvmul 30808  ax-hvmulid 30809  ax-hvmulass 30810  ax-hvdistr1 30811  ax-hvdistr2 30812  ax-hvmul0 30813  ax-hfi 30882  ax-his1 30885  ax-his2 30886  ax-his3 30887  ax-his4 30888  ax-hcompl 31005
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9527  df-card 9956  df-acn 9959  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-q 12957  df-rp 13001  df-xneg 13118  df-xadd 13119  df-xmul 13120  df-ioo 13354  df-ico 13356  df-icc 13357  df-fz 13511  df-fzo 13654  df-fl 13783  df-seq 13993  df-exp 14053  df-hash 14316  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15458  df-rlim 15459  df-sum 15659  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17397  df-topn 17398  df-0g 17416  df-gsum 17417  df-topgen 17418  df-pt 17419  df-prds 17422  df-xrs 17477  df-qtop 17482  df-imas 17483  df-xps 17485  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-submnd 18734  df-mulg 19017  df-cntz 19261  df-cmn 19730  df-psmet 21264  df-xmet 21265  df-met 21266  df-bl 21267  df-mopn 21268  df-fbas 21269  df-fg 21270  df-cnfld 21273  df-top 22789  df-topon 22806  df-topsp 22828  df-bases 22842  df-cld 22916  df-ntr 22917  df-cls 22918  df-nei 22995  df-cn 23124  df-cnp 23125  df-lm 23126  df-haus 23212  df-tx 23459  df-hmeo 23652  df-fil 23743  df-fm 23835  df-flim 23836  df-flf 23837  df-xms 24219  df-ms 24220  df-tms 24221  df-cfil 25176  df-cau 25177  df-cmet 25178  df-grpo 30296  df-gid 30297  df-ginv 30298  df-gdiv 30299  df-ablo 30348  df-vc 30362  df-nv 30395  df-va 30398  df-ba 30399  df-sm 30400  df-0v 30401  df-vs 30402  df-nmcv 30403  df-ims 30404  df-dip 30504  df-ssp 30525  df-ph 30616  df-cbn 30666  df-hnorm 30771  df-hba 30772  df-hvsub 30774  df-hlim 30775  df-hcau 30776  df-sh 31010  df-ch 31024  df-oc 31055  df-ch0 31056  df-shs 31111  df-chj 31113  df-md 32083
This theorem is referenced by:  mdbr4  32101  mdsl0  32113  ssmd1  32114  ssmd2  32115  mdslmd1i  32132  mdslmd3i  32135  mdexchi  32138
  Copyright terms: Public domain W3C validator
OSZAR »