![]() |
Mathbox for Igor Ieskov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > negexpidd | Structured version Visualization version GIF version |
Description: The sum of a real number to the power of N and the negative of the number to the power of N equals zero if N is a nonnegative odd integer. (Contributed by Igor Ieskov, 21-Jan-2024.) |
Ref | Expression |
---|---|
negexpidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
negexpidd.2 | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
negexpidd.3 | ⊢ (𝜑 → ¬ 2 ∥ 𝑁) |
Ref | Expression |
---|---|
negexpidd | ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negexpidd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | negexpidd.2 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
3 | 1, 2 | reexpcld 14182 | . . . 4 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℝ) |
4 | 3 | recnd 11292 | . . 3 ⊢ (𝜑 → (𝐴↑𝑁) ∈ ℂ) |
5 | 4 | negidd 11611 | . 2 ⊢ (𝜑 → ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0) |
6 | 1 | recnd 11292 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
7 | 6 | mulm1d 11716 | . . . . . . 7 ⊢ (𝜑 → (-1 · 𝐴) = -𝐴) |
8 | 7 | eqcomd 2732 | . . . . . 6 ⊢ (𝜑 → -𝐴 = (-1 · 𝐴)) |
9 | 8 | oveq1d 7439 | . . . . 5 ⊢ (𝜑 → (-𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
10 | nn0z 12635 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
11 | 10 | a1i 11 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ)) |
12 | negexpidd.3 | . . . . . . . . . . 11 ⊢ (𝜑 → ¬ 2 ∥ 𝑁) | |
13 | 11, 12 | jctird 525 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁 ∈ ℕ0 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))) |
14 | 2, 13 | mpd 15 | . . . . . . . . 9 ⊢ (𝜑 → (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) |
15 | m1expo 16377 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1) | |
16 | 15 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)) |
17 | 14, 16 | mpd 15 | . . . . . . . 8 ⊢ (𝜑 → (-1↑𝑁) = -1) |
18 | 17 | oveq1d 7439 | . . . . . . 7 ⊢ (𝜑 → ((-1↑𝑁) · (𝐴↑𝑁)) = (-1 · (𝐴↑𝑁))) |
19 | 4 | mulm1d 11716 | . . . . . . 7 ⊢ (𝜑 → (-1 · (𝐴↑𝑁)) = -(𝐴↑𝑁)) |
20 | 18, 19 | eqtr2d 2767 | . . . . . 6 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
21 | neg1cn 12378 | . . . . . . . 8 ⊢ -1 ∈ ℂ | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → -1 ∈ ℂ) |
23 | 22, 6, 2 | mulexpd 14180 | . . . . . 6 ⊢ (𝜑 → ((-1 · 𝐴)↑𝑁) = ((-1↑𝑁) · (𝐴↑𝑁))) |
24 | 20, 23 | eqtr4d 2769 | . . . . 5 ⊢ (𝜑 → -(𝐴↑𝑁) = ((-1 · 𝐴)↑𝑁)) |
25 | 9, 24 | eqtr4d 2769 | . . . 4 ⊢ (𝜑 → (-𝐴↑𝑁) = -(𝐴↑𝑁)) |
26 | 25 | oveq2d 7440 | . . 3 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = ((𝐴↑𝑁) + -(𝐴↑𝑁))) |
27 | 26 | eqeq1d 2728 | . 2 ⊢ (𝜑 → (((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0 ↔ ((𝐴↑𝑁) + -(𝐴↑𝑁)) = 0)) |
28 | 5, 27 | mpbird 256 | 1 ⊢ (𝜑 → ((𝐴↑𝑁) + (-𝐴↑𝑁)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 class class class wbr 5153 (class class class)co 7424 ℂcc 11156 ℝcr 11157 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 -cneg 11495 2c2 12319 ℕ0cn0 12524 ℤcz 12610 ↑cexp 14081 ∥ cdvds 16256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-n0 12525 df-z 12611 df-uz 12875 df-seq 14022 df-exp 14082 df-dvds 16257 |
This theorem is referenced by: 3cubeslem3r 42344 |
Copyright terms: Public domain | W3C validator |