![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrel | Structured version Visualization version GIF version |
Description: A poset is a relation. (Contributed by NM, 12-May-2008.) |
Ref | Expression |
---|---|
psrel | ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isps 18567 | . . 3 ⊢ (𝐴 ∈ PosetRel → (𝐴 ∈ PosetRel ↔ (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴)))) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝐴 ∈ PosetRel → (Rel 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴 ∧ (𝐴 ∩ ◡𝐴) = ( I ↾ ∪ ∪ 𝐴))) |
3 | 2 | simp1d 1139 | 1 ⊢ (𝐴 ∈ PosetRel → Rel 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3948 ⊆ wss 3949 ∪ cuni 4912 I cid 5579 ◡ccnv 5681 ↾ cres 5684 ∘ ccom 5686 Rel wrel 5687 PosetRelcps 18563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-in 3956 df-ss 3966 df-uni 4913 df-br 5153 df-opab 5215 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-res 5694 df-ps 18565 |
This theorem is referenced by: pslem 18571 cnvps 18577 psss 18579 cnvtsr 18587 tsrdir 18603 |
Copyright terms: Public domain | W3C validator |