![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.26-2 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.26-2 1867. Version of r19.26 3107 with two quantifiers. (Contributed by NM, 10-Aug-2004.) |
Ref | Expression |
---|---|
r19.26-2 | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3107 | . . 3 ⊢ (∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) | |
2 | 1 | ralbii 3089 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓)) |
3 | r19.26 3107 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑦 ∈ 𝐵 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝜑 ∧ 𝜓) ↔ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∀wral 3057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3058 |
This theorem is referenced by: fununi 6622 tz7.48lem 8455 isffth2 17898 ispos2 18300 issgrpv 18674 issgrpn0 18675 isnsg2 19104 efgred 19696 isrnghm 20373 dfrhm2 20406 df2idl2rng 21143 cpmatacl 22611 cpmatmcllem 22613 caucfil 25204 aalioulem6 26265 ajmoi 30661 adjmo 31635 prmidl2 33151 iccllysconn 34854 dfso3 35308 fvineqsnf1 36883 ispridl2 37505 ishlat2 38819 fiinfi 42997 ntrk1k3eqk13 43474 |
Copyright terms: Public domain | W3C validator |