![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29r | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.29r 1870; variation of r19.29 3110. (Contributed by NM, 31-Aug-1999.) (Proof shortened by Wolf Lammen, 29-Jun-2023.) |
Ref | Expression |
---|---|
r19.29r | ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iba 527 | . . 3 ⊢ (𝜓 → (𝜑 ↔ (𝜑 ∧ 𝜓))) | |
2 | 1 | ralrexbid 3102 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜓 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
3 | 2 | biimpac 478 | 1 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wral 3057 ∃wrex 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-ral 3058 df-rex 3067 |
This theorem is referenced by: r19.29imd 3114 2reu5 3752 rlimuni 15520 rlimno1 15626 neindisj2 23020 lmss 23195 fclsbas 23918 isfcf 23931 ucnima 24179 metcnp3 24442 cfilucfil 24461 bndth 24877 ellimc3 25801 lmxrge0 33547 gsumesum 33672 esumcst 33676 esumfsup 33683 voliune 33842 volfiniune 33843 bnj517 34510 nummin 34708 fvineqsneq 36885 cover2 37182 naddgeoa 42818 prmunb2 43742 |
Copyright terms: Public domain | W3C validator |